欢迎来到天天文库
浏览记录
ID:30872131
大小:637.00 KB
页数:17页
时间:2019-01-03
《8版高中数学(人教a版)必修同步教师用书:第章..3直线与平面平行的性质..4平面与平面平行的性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质1.理解直线与平面、平面与平面平行的性质定理的含义.(重点)2.能用三种语言准确描述直线与平面、平面与平面平行的性质定理.(重点)3.能用直线与平面、平面与平面平行的性质定理证明一些空间平行关系的简单命题.(难点)[基础·初探]教材整理1 直线与平面平行的性质定理阅读教材P58~P59“例3”以上的内容,完成下列问题.自然语言一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言a∥α,a⊂β,α∩β=b⇒a∥b图形语言作用证明两直线平行判断(正确的打“√”,错误的打“×”)(1)
2、一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行.( )(2)一条直线和一个平面平行,它就和这个平面内的任何直线无公共点.( )(3)过直线外一点,有且仅有一个平面和已知直线平行.( )(4)如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.( )【解析】 由线面平行的性质定理知(1)(4)正确;由直线与平面平行的定义知(2)正确;因为经过一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面,故(3)错.【答案】 (1)√ (2)√ (3)× (4)√教材整理2 平面与平面平行的性质定理阅读教材P60“思考”以下至P61“练
3、习”以上的内容,完成下列问题.自然语言如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号语言α∥β,α∩γ=a,β∩γ=b⇒a∥b图形语言作用证明两直线平行已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b的位置关系是( )A.平行B.相交C.异面D.不确定【解析】 由面面平行的性质定理可知a∥b.【答案】 A[小组合作型]线面平行性质定理的应用 如图2215,四边形EFGH是空间四边形ABCD的一个截面,若截面为平行四边形,求证:AB∥平面EFGH.图2215【精彩点拨】 要证明AB∥平面EFGH,只需证AB平行于平面
4、EFGH内的某一条直线,由于EFGH是平行四边形,可利用其对边平行的特点,达到证题的目的.【自主解答】 ∵四边形EFGH为平行四边形,∴EF∥HG.∵HG⊂平面ABD,EF⊄平面ABD,∴EF∥平面ABD.∵EF⊂平面ABC,平面ABC∩平面ABD=AB,∴EF∥AB.∵AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.运用线面平行的性质定理时,应先确定线面平行,再寻找过已知直线的平面与平面相交的交线,然后确定线线平行.应认真领悟线线平行与线面平行的相互转化关系.[再练一题]1.如图2216,在三棱柱ABCA1B1C1中,过AA1作一平面交平面BCC1B1于
5、EE1.求证:AA1∥EE1.图2216【证明】 在三棱柱ABCA1B1C1中,AA1∥BB1,∵AA1⊄平面BCC1B1,BB1⊂平面BCC1B1,∴AA1∥平面BCC1B1.∵AA1⊂平面AEE1A1,平面AEE1A1∩平面BCC1B1=EE1,∴AA1∥EE1.面面平行性质定理的应用 如图2217,已知α∥β,点P是平面α,β外的一点(不在α与β之间),直线PB,PD分别与α,β相交于点A,B和C,D.图2217(1)求证:AC∥BD;(2)已知PA=4,AB=5,PC=3,求PD的长.【精彩点拨】 (1)利用面面平行的性质定理直接证明即可.(2)利用平行线分线段
6、成比例定理可求得PD.【自主解答】 (1)证明:∵PB∩PD=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)由(1)得AC∥BD,∴=,∴=,∴CD=,∴PD=PC+CD=.1.利用面面平行的性质定理判定两直线平行的步骤:(1)先找两个平面,使这两个平面分别经过这两条直线中的一条;(2)判定这两个平面平行;(3)再找一个平面,使这两条直线都在这个平面上;(4)由性质定理得出线线平行.2.应用面面平行的性质定理时,往往需要“作”或“找”辅助平面,但辅助平面不可乱作,要想办法与其他已知量联系起来.[再练一题]2.如图2218
7、,在三棱柱ABCA1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.求证:N为AC的中点.图2218【证明】 因为平面AB1M∥平面BC1N,平面ACC1A1∩平面AB1M=AM,平面BC1N∩平面ACC1A1=C1N,所以C1N∥AM,又AC∥A1C1,所以四边形ANC1M为平行四边形,所以AN∥C1M且AN=C1M,又C1M=A1C1,A1C1=AC,所以AN=AC,所以N为AC的中点.[探究共研型]平行关系的综合应用探究1 应用线面平行性质定理有什么技巧?【提示】 应着力寻找过已知直线的平面与已知
此文档下载收益归作者所有