奥数:六级奥数.数论.整除问题(abc级).学生版

奥数:六级奥数.数论.整除问题(abc级).学生版

ID:30851257

大小:1.88 MB

页数:18页

时间:2019-01-04

奥数:六级奥数.数论.整除问题(abc级).学生版_第1页
奥数:六级奥数.数论.整除问题(abc级).学生版_第2页
奥数:六级奥数.数论.整除问题(abc级).学生版_第3页
奥数:六级奥数.数论.整除问题(abc级).学生版_第4页
奥数:六级奥数.数论.整除问题(abc级).学生版_第5页
资源描述:

《奥数:六级奥数.数论.整除问题(abc级).学生版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数的整除知识框架一、整除的定义:当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a叫做b的倍数,b叫a的约数,记作b

2、a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作ba.二、常见数字的整除判定方法1.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2.一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和

3、能被9整除,这个数就能被9整除;3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;5.如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除;6.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍

4、数,这个数一定是99的倍数。7.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。1.若一个整数的个位数字截去,再从余下的数中,加个位数的4倍,如果和是13的倍

5、数,则原数能被13整除。如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。2.若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。3.若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。如果和太大或心算不易看出是否19的倍数,就需要继续上述「截尾、

6、倍大、相加、验差」的过程,直到能清楚判断为止。4.若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。5.若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除.6.若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。【备注】(以上规律仅在十进制数中成立.)三、整除性质性质1如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2如果数a能被数b整除,b又能被数c整除,那么

7、a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4)∣12.性质5如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被

8、数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;四、其他重要结论1、能被2和5,4和25,8和125整除的数的特征是分别在这个数的未一位、未两位、未三位上。我们可以概括成一个性质:未n位数能被(或)整除的数,本身必能被(或)整除;反过来,末n位数不能被(或)整除的数,本身必不能被(或)整除。例如,判断19973216、91688169能否能被16整除,只需考虑未四位数能否被16(因为16=)整除便可,这样便可以举一反三,运用自如。2、利用连续整数之积的性质:任意

9、两个连续整数之积必定是一个奇数与一个偶数之积,因此一定可被2整除;任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。这个性质可以推广到任意个整数连续之积。3、一个奇位数,原序数与反序数的差一定是99的倍数,一个偶位数,原序数与反序数的差一定是9的倍数。4、;,这样的数一定能被7、11、13整除。5、等等。重难点数的整除概念、性质及整除特征为解决一些

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。