中考数学试卷分类汇编 角平分线

中考数学试卷分类汇编 角平分线

ID:30814649

大小:2.73 MB

页数:7页

时间:2019-01-03

中考数学试卷分类汇编 角平分线_第1页
中考数学试卷分类汇编 角平分线_第2页
中考数学试卷分类汇编 角平分线_第3页
中考数学试卷分类汇编 角平分线_第4页
中考数学试卷分类汇编 角平分线_第5页
资源描述:

《中考数学试卷分类汇编 角平分线》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、角平分线1、(2013•雅安)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为(  ) A.50°B.60°C.70°D.100°考点:平行线的性质;角平分线的定义.分析:根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解.解答:解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CD,∴∠BAD=∠D,∴∠CAD=∠D,在△ACD中,∠C+∠D+∠CAD=180°,∴80°+∠D+∠D=180°,解得∠D=50°.故选A.

2、点评:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键.2、(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是(  )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3. A.1B.2C.3D.4考点:角平分线的性质;线段垂直平分线的性质;作图—基本作图.分析:①根据作图的

3、过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.解答:解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠AD

4、C=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC:S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.点评:本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.3、(2013•咸宁)如图,在平面直角坐标系中

5、,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为(  ) A.a=bB.2a+b=﹣1C.2a﹣b=1D.2a+b=1考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得

6、2a

7、=

8、b+1

9、,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.解答:解:根据作图方法可得点P在第二象限角平分线上,

10、则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.点评:此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点

11、横坐标

12、=

13、纵坐标

14、.4、(2013•曲靖)如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE= 40° .考点:对顶角、邻补角;角平分线的定义.分析:根据对顶角相等求出∠AOC,再根据角平分线的定义解答.解答:解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°.故答案为:40°.点评

15、:本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.5、(2013成都市)如图,,若AB∥CD,CB平分,则______度.答案:60°解析:∠ACD=2∠BCD=2∠ABC=60°6、(13年安徽省14分、23压轴题)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。如图1,四边形ABCD即为“准等腰梯形”。其中∠B=∠C。(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示

16、意图即可)。(2)如图2,在“准等腰梯形”ABCD中,∠B=∠C,E为边BC上一点,若AB∥DE,AE∥DC,求证:(3)在由不平行于B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。