欢迎来到天天文库
浏览记录
ID:30797188
大小:712.50 KB
页数:26页
时间:2019-01-03
《一次函数的与几何图形综合的题目(含答案)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案一次函数与几何图形综合专题讲座思想方法小结:(1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结:(1)常数k,b对直线y=kx+b(k≠0)位置的影响.①当b>0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当
2、b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,即->0时,直线与x轴正半轴相交;当b=0时,即-=0时,直线经过原点;当k,b同号时,即-﹤0时,直线与x轴负半轴相交.③当k>O,b>O时,图象经过第一、二、三象限;当k>0,b=0时,图象经过第一、三象限;当b>O,b<O时,图象经过第一、三、四象限;当k﹤O,b>0时,图象经过第一、二、四象限;当k﹤O,b=0时,图象经过第二、四象限;当b<O,b<O时,图象经过第二、三、四象限.(2)直线y=kx+b(k≠0)与直线y=kx(k≠0)的位置关系.直线y=kx+
3、b(k≠0)平行于直线y=kx(k≠0)当b>0时,把直线y=kx向上平移b个单位,可得直线y=kx+b;当b﹤O时,把直线y=kx向下平移
4、b
5、个单位,可得直线y=kx+b.(3)直线b1=k1x+b1与直线y2=k2x+b2(k1≠0,k2≠0)的位置关系.精彩文档实用标准文案①k1≠k2y1与y2相交;②y1与y2相交于y轴上同一点(0,b1)或(0,b2);③y1与y2平行;④y1与y2重合.例题精讲:1、直线y=-2x+2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC=OB(1)求AC的解析式;xyoB
6、ACPQ(2)在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q,试探究BP与PQ的数量关系,并证明你的结论。(3)在(2)的前提下,作PM⊥AC于M,BP交AC于N,下面两个结论:①(MQ+AC)/PM的值不变;②(MQ-AC)/PM的值不变,期中只有一个正确结论,请选择并加以证明。xyoBACPQM2.(本题满分12分)如图①所示,直线L:与轴负半轴、精彩文档实用标准文案轴正半轴分别交于A、B两点。(1)当OA=OB时,试确定直线L的解析式;第2题图②第2题图①(2)在(1)的条件下,如图②所示,设Q为AB延长
7、线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,BN=3,求MN的长。(3)当取不同的值时,点B在轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交轴于P点,如图③。第2题图③问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。考点:一次函数综合题;直角三角形全等的判定.专题:代数几何综合题.分析:(1)是求直线解析式的运用,会把点的坐标转化为线段的长度;(2)由OA=OB得到启发
8、,证明∴△AMO≌△ONB,用对应线段相等求长度;(3)通过两次全等,寻找相等线段,并进行转化,求PB的长.精彩文档实用标准文案解答:解:(1)∵直线L:y=mx+5m,∴A(-5,0),B(0,5m),由OA=OB得5m=5,m=1,∴直线解析式为:y=x+5.(2)在△AMO和△OBN中OA=OB,∠OAM=∠BON,∠AMO=∠BNO,∴△AMO≌△ONB.∴AM=ON=4,∴BN=OM=3.(3)如图,作EK⊥y轴于K点.先证△ABO≌△BEK,∴OA=BK,EK=OB.再证△PBF≌△PKE,∴PK=PB.∴P
9、B=BK=OA=.点评:本题重点考查了直角坐标系里的全等关系,充分运用坐标系里的垂直关系证明全等,本题也涉及一次函数图象的实际应用问题.3、如图,直线与x轴、y轴分别交于A、B两点,直线与直线关于x轴对称,已知直线的解析式为,(1)求直线的解析式;(3分)(2)过A点在△ABC的外部作一条直线,过点B作BE⊥于E,过点C作CF⊥于F分别,请画出图形并求证:BE+CF=EF(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交与点M,且BP=CQ,在△ABC平移的过程中,①OM
10、为定值;②MC精彩文档实用标准文案为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。(6分)考点:轴对称的性质;全等三角形的判定与性质.分析:(1)根据题意先求直线l1与x轴、y轴的交点A、B的坐标,再根据轴对称的性质求直线l2的上点C的坐标,用待定系数法求直线l2的解析式;(2)根据题意结
此文档下载收益归作者所有