基于边缘特征的二值化阈值选取方法

基于边缘特征的二值化阈值选取方法

ID:30642687

大小:16.89 KB

页数:4页

时间:2019-01-02

基于边缘特征的二值化阈值选取方法_第1页
基于边缘特征的二值化阈值选取方法_第2页
基于边缘特征的二值化阈值选取方法_第3页
基于边缘特征的二值化阈值选取方法_第4页
资源描述:

《基于边缘特征的二值化阈值选取方法》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、从本学科出发,应着重选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果基于边缘特征的二值化阈值选取方法摘要阈值选取是图象处理与分析的基础。针对几种常用的图象二值化自动选取阈值方法,通过计算机仿真对实验结果进行了比较研究。在此基础上,提出了一种新的图象二值化算法。该算法着重于在图象二值化时保留图象的边缘特征。实验结果表明,这个基于边缘特征检测算子的算法能很好地保留原图的边缘特征,并能处理低质量的图象。关键词图象分割图象处理二值化图象分割是图象分子合处理的重要手段,其目的是从图象中把目标区域和背景区域分开。图象分割有很多方法,其中最为

2、简单和有效的是阈值处理。通过选择一个或几个合适的灰度阈值,原图中的目标和背景就很容易被分开。如何选取阈值能达到有效的分割效果,是阈值处理的关键。1几种典型算法平均灰度值法该方法以图象中的所有象素的灰度值的平均值为阈值。阈值可由下面的公式计算得到:其中,N为象素总数,L为最大灰度级,f(i,j)为点处的灰度值。该方法计算简单,对哪些对比度强的图象非常有效,但对哪些对比度较低的图象则效果较差。类别方差法对一幅图象,根据一个门限可将其划分为前景和背景两类,选取不同的门限可以得到不同的类别分离性能,类别方差反映了类别划分的性能。类别方差自动门限法就是利用类别方差作为判断依据,选取使得课题份量和难易程度

3、要恰当,博士生能在二年内作出结果,硕士生能在一年内作出结果,特别是对实验条件等要有恰当的估计。从本学科出发,应着重选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果类间方差最大和类内方差最小的门限作为最佳阈值。设图象中的灰度范围是G={0,1,2,…,L-1},选择门限t将其划分为两类:最大熵法因为熵属于一种均匀度量,均匀性用熵来度量3时,则可以导出最大熵阈值法:设t为阈值,目标灰度分布为p0/Pt,p1/Pt,…,pt/Pt,其中,。同样,背景灰度分布为pt+1/(1-Pt),…,pL-1/(1-Pt),目标部分熵为背景部分熵为

4、,直方图的熵为E(t)=E1(t)+E2(t)E(t)最大即意味着目标区域和背景区域内各自的灰度分布具有最大的同一性,同时t代表分割两区域的阈值。该方法由于涉及对数运算,运算速度较慢,但对不同目标大小和信噪比的图象能产生较好的分割效果。以上几种算法都没有考虑在二值化过程中保留原有图象的特征。基于边缘特征的二值化方法边缘特征在文字识别、指纹识别等应用中是非常重要的特征,是识别成功与否的关键。因此,在这些应用中的二值化预处理过程中,我们希望能较好地保留原有图象的边缘特征,并不增加新的边缘特征。算法思想的关键:首先,用微分算子检测图象的边缘;然后,在这些边缘象素点上进行二值化阈值的自动选取;最后,对

5、于其他非边缘象素点则采取常规方法进行二值化处理。该算法描述如下://f为去噪后的输入图象,g为二值化后的图象①对f进行抽取边缘特征,得到边缘图象e;②对e进行常规二值化处理,得到二值图象b;③用整体阈值法确定一个f的整体阈值;课题份量和难易程度要恰当,博士生能在二年内作出结果,硕士生能在一年内作出结果,特别是对实验条件等要有恰当的估计。从本学科出发,应着重选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果④确定f的每个象素对应的阈值;⑤根据求出的阈值输出二值图象g。原图中可能含有噪声,在处理前要进行去噪,可采用均值滤波器或中值滤波

6、器,或者选择更为复杂一些的如自适应滤波方法。在第①步采用Sobel算子进行边缘提取:

7、f(i-1,j-1)+2f(i-1,j)+f(i-1,j+1)-[f(i+1,j-1)+2f(i+1,j)+f(i+1,j+1)]

8、+

9、f(i-1,j-1)+2f(i,j-1)+f(i+1,j-1)-[f(i-1,j+1)+2f(i,j+1)+f(i+1,j+1)]

10、第②步是对边缘特征图象进行常规二值化,以确定哪些象素点是边缘象素点。这是可采用平均灰度值或最大熵法等方法。第④步是算法的关键,根据第②步的结果进行二值化阈值的自动选择,在边缘象素点进行局部阈值计算。算法具体实现如下:for(i=1;i0Th(i,

11、j)=Th0;}第⑤步根据计算处的阈值对f进行二值化处理,即刻得到输出图象g。实验结果比较上节提出了把图象边缘特征与其他阈值选取结合起来的算法。图1~4是用该算法和其他几种自动选取阈值二值化方法对同一幅图形进行处理比较的结果。图1原图图2基于边缘信息的二值化图以平均灰度值为阈值的二值化图4以最大方差为阈值的二值化从以上几幅图可以看出,用类别方差为阈值的二值化比平均灰度值为阈值的效果要好,但用本文的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。