略论中学数学中的分类讨论法

略论中学数学中的分类讨论法

ID:30541948

大小:105.00 KB

页数:4页

时间:2018-12-31

略论中学数学中的分类讨论法_第1页
略论中学数学中的分类讨论法_第2页
略论中学数学中的分类讨论法_第3页
略论中学数学中的分类讨论法_第4页
资源描述:

《略论中学数学中的分类讨论法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、略论中学数学中的分类讨论法  【摘要】在中学数学中,分类讨论的思想是极为常见的。众所周知,用代数语言表述事物具有一般性。例如,用一个字母表示实数时,如果没有特殊规定,该字母可以是正数,可以是零,可以是负数。当用含义字母的式子表示几何关系时,就可能出现不同的情况。因此分类讨论是不可避免的。当面临较复杂的对象时,人们往往会考虑将对象按某种特征分成几个部分,一个一个研究,再综合之,已达到认识对象总体的目的。这种分类在科学上是广为适用的。  【关键词】分类;分类讨论;原则;教学  分类是根据对象的相同点和差异点将对象区分为不同类的逻辑方法。分类也叫划分。分类是以比较为基础的,通过比较识别对象之间的差

2、异,根据相同点将对象归为较大的类,根据差异点将对象归为较小的类,从而将对象区分为具有一定从属关系的不同等级的系统。  一、分类的三要素  分类的目的在于使知识组成条理化,进而系统化。分类具有不可缺少的三要素:母项、子项和根据。母项是被划分的总概念,子项是划分后所得的类概念,划分的根据就是借以划分的标准。  二、分类遵循的原则  任何分类必须遵循以下标准,只有这样,才能在分类过程中防止出现遗漏、重复或者混淆不清的现象。4  1.分类应按同一个标准  在分类前,应当从被分类的概念属性中,取一个属性作为依据,这与其说是原则不如说是方法。它有两层意思:一是判别概念应放在哪一类的衡量尺度;二是对两个不

3、同的概念要用统一尺度衡量,否则就会出现划分的结果重叠或过度的逻辑错误,使划分后的结果混淆不清。  2.分类应是完备的  分类所得的各子项外延之和必须与被分类的母项的外延相等。从量方面要求一个也不能丢掉。从集合观点看,被分类概念在外延应被分类所得概念的外延覆盖,各属概念的并集等于被分概念外延的全集,否则会出现过宽或过窄的逻辑错误。  3.分类应是纯粹的  分类所得的个子项必须互相排斥,划分的子项概念的外延之间是不相容的关系。从集合的角度看,被分成的任何两类之间不相交,即无共同因素,每一类元素之间满足一个标准或关系,不满足该标准的不能属于同一类。  三、分类讨论的常规方法  (1)依据数学概念的

4、定义进行分类。例如:绝对值、直线与平面所成的角等。  (2)依据数学公式、原则、法则的适用范围进行分类。例如:等比数列求和公式。  (3)依据数形结合进行分类。例如:集合的交、并、补用数轴讨论。4  (4)依据位置关系进行分类。例如:几何中点与点,点与线,面与面等位置关系。  (5)依据数学性质进行分类。例如:偶次算数根的性质,二次函数、幂函数等性质。  (6)依据参数的变化范围进行分类。  (7)依据整数的奇偶性进行分类。  四、中学数学教学中,利用分类的方法处理问题的情况  1.定理、结论的论证求解过程及结论的表现形式  在现行的初中数学课本中,关于圆周角和圆心角的关系定理“同弧上的圆周

5、角等于圆心角的度数的一半”的证明就采用了圆心与圆周角的关系的不同情况来分类的。  2.对已有结论进行推广  我们还可以在已有结论所讨论的范围的基础上,对尚未讨论的情形进行探究,从而达到对结论的扩张和推广。例如:在有了关于二次、三次方程的根式解以后,按照方程的次数分类,就会想到四次、五次等方程的解的问题而得到的新的结论。  五、举例说明分类讨论思想可以解决的数学问题  1.排列组合问题  例1:所以三位数中有且仅有两个数字相同的数字共有多少个?  思考与分析:符合条件的三位数可以分为如下10类。  有两个0的:100,200,…,900,共有C19=9。  有两个1的:在除1以外的9个数中任选

6、一个,在1,1之间的位置关系有3个,但应除去011这种情况,共有9×3-1=26。4  同理,在两个2,两个3,……,两个9的三位数各有26个。  所以,26×9+9=243(个)。  2.运用抽屉原理的有关问题  关键是构造抽屉,而构造抽屉的实质就是根据题目结论的要求,选择恰当的分类标准,对已知条件中的所以元素进行分类。  3.含参数问题的讨论  例2:讨论方程(k2+k-2)x2+k2y2=9的曲线的形式。  思考与分析:先划分k2+k?2=0,k2=0的根为-2,0,1。  (1)当k0和k2>0,  ∴曲线是椭圆。由于k2+k?2

7、,方程化为y=±,这是与x轴平行的两条直线。  (3)当-20,∴曲线是双曲线,它的焦点在y轴上。  (4)当k=0时,不存在图形。  (5)当00时,曲线是双曲线,焦点在y轴上。  (6)当k=1时,方程化为y=±3,为平行于x轴的两条直线。  (7)当k>1,k2+k?2>0,k2>0,其中当12时,曲线是焦点在x轴上的椭圆。4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。