欢迎来到天天文库
浏览记录
ID:30476860
大小:31.96 KB
页数:24页
时间:2018-12-30
《陈省身,演讲》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划陈省身,演讲 陈省身教授的演讲:中国的数学 ----几件数学新闻和对于中国数学的一些看法 l庆祝自然科学基金制设立15周年和国家自然科学基金委员会成立10周年的讲演陈省身 张存浩先生要我讲点数学,这么短的时间,而数学这么大,只好举几个要点谈谈。 数学是什么?数学是根据某些假设,用逻辑的推理得到结论,因为用这么简单的方法,所以数学是一门坚固的科学,它得到的结论是很有效的。这样的结论自然对学问的各方
2、面都很有应用,不过有一点很奇怪的,就是这种应用的范围非常大。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 最初你用几个数或画几个图就得到的一些结论,而由此引起的发展却常常令人难以想象。在这个发展过程中,我认为不仅在数学上最重要,而且在人类文化史上也非常突出的就是Euclid在《几何原本》。这是第一本系统性的书,主要的目的是
3、研究空间的性质。这些性质都可以从很简单的公理用逻辑的推理得到。这是一本关于整个数学的书,不仅仅限于几何学。例如,Euclid书上首先证明素数的个数是无穷的,这便是一个算术的结论。随着推理的复杂化,便有许多"深刻"的定理,需要很长的证明。例如,有些解析数论定理的证明,便需几十条引理。最初,用简单的方法证明几个结果,大家很欣赏,也很重要。后来方法发展了,便产生很复杂的推理,有些定理需要几十页才能证明。现在有的结果的证明甚至上百页,上千页。看到这么复杂的证明,我们固然惊叹某些数学家高超的技巧和深厚的功力,但心中难免产生一
4、些疑问,甚或有些无所适从的感觉。所以我想,日后数学的重要进展,在于引进观念,使问题简化。 先讲讲有限单群的问题。 1.有限单群我们知道,数学的发展中有一个基本观念——群。群也是数学之中各方面的最基本的观念。怎样研究群的结构呢?最简单的方法是讨论它的子群,再由小的群的结构慢慢构造大一些的群。群中最重要的一种群是有限群,而有限群是一个难极了的题目,需要有特别的方法,特别的观念去研究。 命G为群,g∈G为一子群,如对任何g∈G-1gHg∈H则称H为正规的。正规子群存在,可使G的研究变为子群H及商群G/H的研究。
5、这样就有一个很自然的问题,有哪些有限的单群。单群除了它自己和单位元之外,没有其他的非平凡的正规子群。数学上称其为简单群,其实一点也不简单。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 有限群论的一个深刻的定理是Fei-Thompson定理:非交换单群的阶是偶数。更不寻常的是除了某些大类,Lie型单群)外,后来发现了26个零
6、零碎碎的有限单群,现在知道, 最大的散在单群的阶是971=808,017……=10这是很大的单群,由和两位数学家所发现,数学家称它为魔群。 单群的权威数学家相信有限单群都在这里了,这当然是数学上一个很好的结果。把单群都确定了,就像化学家把元素都确定了,物理学家把核子的结构都确定了一样。可这里有个缺点,Gorenstein并未将证明定出来。他讲若将证明写出来至少有1000页,而1000页的证明无论如何很容易有错误。可是Gorenstein又说,不要紧,若有错误,这个错误一定可以补救。你相信不相信?数学界有些人怀疑
7、这样的证明是否必要。现在计算机的出现,许多问题可以验证到很大的数,是否还需要严格的证明,已变成数学上一个有争论的问题。这个争论看来一时无法解决。段学复先生是我的老朋友,是有限群论的专家,也许我们可以问一下他的意见。我个人觉得这个问题很难回答。不过数学家有个自由,当你不能做或不喜欢做一个问题时,你完全不必投入,你只需做一些你能做或喜欢做的问题。 2四色问题把地图着色,使得邻国有不同的颜色,需要几种颜色?经验告诉我们,四色够了。但是严格的证明极难。这就是有各的四色问题。目的-通过该培训员工可对保安行业有初步了解,并感
8、受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 地图不一定在球面上,也可在亏格高的的曲面上。可惊奇的是,这个着色问题,对于g>=1的曲面完全解决了。可以证明:有整数χ,满足条件:在亏格为g的曲面上任何地图都可用χ种
此文档下载收益归作者所有