开启新时代的大门图灵机与人工智能

开启新时代的大门图灵机与人工智能

ID:30422519

大小:110.63 KB

页数:19页

时间:2018-12-29

开启新时代的大门图灵机与人工智能_第1页
开启新时代的大门图灵机与人工智能_第2页
开启新时代的大门图灵机与人工智能_第3页
开启新时代的大门图灵机与人工智能_第4页
开启新时代的大门图灵机与人工智能_第5页
资源描述:

《开启新时代的大门图灵机与人工智能》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、开启新时代的大门图灵机与人工智能1开启新时代的大门---图灵机与人工智能(1)2010年06月25日星期五下午09:35图灵机与人工智能转自百度数学吧,作者不详一:引言开启新时代的大门图灵机与人工智能1开启新时代的大门---图灵机与人工智能(1)2010年06月25日星期五下午09:35图灵机与人工智能转自百度数学吧,作者不详一:引言开启新时代的大门图灵机与人工智能1开启新时代的大门---图灵机与人工智能(1)2010年06月25日星期五下午09:35图灵机与人工智能转自百度数学吧,作者不详一:引言开启新时

2、代的大门图灵机与人工智能1开启新时代的大门---图灵机与人工智能(1)2010年06月25日星期五下午09:35图灵机与人工智能转自百度数学吧,作者不详一:引言开启新时代的大门图灵机与人工智能1开启新时代的大门---图灵机与人工智能(1)2010年06月25日星期五下午09:35图灵机与人工智能转自百度数学吧,作者不详一:引言开启新时代的大门图灵机与人工智能1开启新时代的大门---图灵机与人工智能(1)2010年06月25日星期五下午09:35图灵机与人工智能转自百度数学吧,作者不详一:引言计算理论可以追溯

3、到1900年,当时著名的大数学家希尔伯特在世纪之交的数学家大会上给国际数学界提出了著名的23个数学问题。其中第十问题是这样的:存在不存在一种有限的、机械的步骤能够判断"丢番图方程"是否存在解?这里就提出来了有限的、机械的证明步骤的问题,用今天的话说就是算法。但在当时,人们还不知道"算法"是什么。实际上,当时数学领域中已经有很多问题都是跟"算法"密切相关的,因而,科学的"算法"定义呼之欲出。之后到了30年代的时候,终于有两个人分别提出了精确定义算法的方法,一个人是图灵,一个人是丘奇。而其中图灵提出来的图灵机模

4、型直观形象,于是很快得到了大家的普遍接受。不知道你是否听说过图灵这个名字。可能有些人知道牛顿,知道爱因斯坦,甚至知道冯·诺依曼,但不知道图灵。然而图灵的贡献绝对不亚于这些科学大师。图灵最大的贡献就是把算法这样一个基本的、深刻的概念用他的图灵机模型讲清楚了。正是因为图灵奠定的理论基础,人们才有可能发明20世纪以来甚至是人类有史以来最伟大的发明:计算机。因此人们称图灵为:计算机理论之父。图灵生活的年代经历了第二次世界大战。在二战期间他曾经为英国政府效力成功破译了德国的密码,因而为英国做出了突出贡献。其实也正是因

5、为二战,英国政府才肯掏钱让图灵制造最原始的计算机,当然这种计算机是专门用来破译密码用的,而不是我们现在用的通用计算机。(有一部片子叫《密码迷情》英文名是《enigma》就是根据图灵当时破译德国密码的故事改编的,大家有兴趣可以去找一找。)图灵这个人很古怪,只喜欢自己一个人闷头研究,不喜欢与别人交流。并且据说他还是一个同性恋者。要知道在当时的英国,同性恋行为可是大逆不道的。最后,在他事业刚刚达到顶风的时候,他自杀了。为了纪念这个伟大的学者,计算机界设立了最高荣誉奖:ACM图灵奖。图灵机的产生一方面奠定了现代数字

6、计算机的基础(要知道后来冯诺依曼就是根据图灵的设想才设计出第一台计算机的)。另一方面,根据图灵机这一基本简洁的概念,我们还可以看到可计算的极限是什么。也就是说实际上计算机的本领从原则上讲是有限制的。请注意,这里说到计算机的极限并不是说它不能吃饭、扫地等硬件方面的极限,而是仅仅就从信息处理这个角度,计算机也仍然存在着极限。这就是图灵机的停机问题。这个问题在图灵看来更加重要,在他当年的论文中,其实他是为了论证图灵停机问题才"捎带手"提出了图灵机模型的。提到了图灵停机问题,我不禁又要提一提哥德尔定理、罗素悖论、康

7、托尔的集合论等等一系列大事儿。早在19世纪末的时候,康托尔为集合论做了奠基性的研究。要知道,数学虽然五花八门,但是人们发现,运用集合这个概念可以概括所有的数学,也就是说集合是一切数学的基础。因而如果为集合论奠定了公理化的基础,也就等于为数学奠定了基础。康托尔就是做了这方面的贡献。另外,他为了证明实数的个数比自然数多这个结论,发明了一种被称为"对角线删除"的证明方法。没想到的是,这个方法影响非常深广,直到后来的图灵停机问题、哥德尔定理其实都是该方法的不同延伸。19世纪末的人们忙于为基于集合论的数学建立公理体系

8、大厦。然而就当这座大厦即将完工的时候,一件可怕的事情发生了,罗素提出来的罗素悖论粉碎了数学家的梦想。关于罗素悖论的一个通俗化版本是:"村子里有一个理发师,他给自己定了一条规矩:'不给那些所有给自己理发的人理发'。现在就要问,这个理发师该不该给自己理发?"。如果你尝试回答这个问题就会发现奇怪的事情:这个问题本身似乎是不可能的!正是因为这种奇怪的逻辑,哲学家罗素才颠覆了整个数学大厦的基础!因为集合论中存在着矛盾,所以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。