optimization by stochastic approximation

optimization by stochastic approximation

ID:30372965

大小:4.96 MB

页数:68页

时间:2018-12-29

optimization by stochastic approximation_第1页
optimization by stochastic approximation_第2页
optimization by stochastic approximation_第3页
optimization by stochastic approximation_第4页
optimization by stochastic approximation_第5页
资源描述:

《optimization by stochastic approximation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter4OPTIMIZATIONBYSTOCHASTICAPPROXIMATIONUp-tonowwehavebeenconcernedwithfindingrootsofanunknownfunctionobservedwithnoise.Inapplications,however,oneoftenfacestotheoptimizationproblem,i.e.,tofindingtheminimizerormax-inizerofanunknownfunctionItiswell

2、knowthatachievesitsmaximumorminimumvaluesattherootsetofitsgradient,i.e.,atalthoughitmaybeonlyinthelocalsense.ThegradientisalsowrittenasIfthegradientcanbeobservedwithorwithoutnoise,thentheoptimizationproblemisreducedtotheSAproblemwehavediscussedinprevi

3、ouschapters.Here,weareconsideringtheoptimizationproblemforthecasewherethefunctionitselfratherthanitsgradientisobservedandtheobservationsarecorruptedbynoise.ThisproblemwassolvedbytheclassicalKiefer-Wolfowitz(KW)algorithmwhichtookthefinitedifferencestos

4、erveasestimatesforthepartialderivatives.Tobeprecise,letbetheestimateattimefortheminimizer(maximizer)ofandletbetwoobservationsonattimewithnoisesandrespectively,wherearetwovectorsperturbedfromtheestimatebyandrespec-tively,onthecomponentofTheKWalgorithms

5、uggeststaking151152STOCHASTICAPPROXIMATIONANDITSAPPLICATIONSthefinitedifferenceastheobservationofthecomponentofthegradientItisclearthatwherethecomponentofequalsTheRMalgorithmwithdefinedaboveiscalledtheKWalgorithm.Itisunderstandablethatintheclassicalth

6、eoryforconvergenceoftheKWalgorithmratherrestrictiveconditionsareimposednotonlyonbutalsoonandBesides,ateachiterationtoformfinitedifferences,observationsareneeded,whereisthedimensionofInsomeproblemsmaybeverylarge,forexample,intheproblemofoptimizingweigh

7、tsinaneuro-networkcorrespondstothenumberofnodes,whichmaybelarge.Therefore,itisofinterestnotonlytoweakenconditionsrequiredforconvergenceoftheoptimizingalgorithmbutalsotoreducethenumberofobservationsperiteration.InSection4.1theKWalgorithmwithexpandingtr

8、uncationsusingrandomizeddifferencesisconsidered.Astobeshown,becauseofreplac-ingfinitedifferencesbyrandomizeddifferences,thenumberofobserva-tionsisreducedfromto2foreachiteration,andbecauseofinvolvingexpandingtruncationsinthealgorithmandapplying

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。