欢迎来到天天文库
浏览记录
ID:30355992
大小:27.95 KB
页数:20页
时间:2018-12-29
《纳米材料性能》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划纳米材料性能 纳米材料性能及其应用 序号:学号:姓名: 摘要:介绍了纳米材料等基本概念,综述了纳米材料力学、磁学与电学等方面的特性。并对纳米材料的研究和应用趋势和市场前景进行了预测和展望。关键词:纳米材料;特性;应用;进展;综述。 1前言 诺贝尔奖获得者Feyneman曾经预言:如果对物体微小规模上的排列加以某种控制,就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是纳米材料。纳米晶粒中原子排列已不能处理成无限长程有序,通常
2、大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致其力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米材料对新材料的设计和发展以及人们对固体材料本质结构性能的认识都具有十分重要的价值,被科学家们誉为“21世纪最有前途的材料”[1,2]。2基本概念 纳米技术目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 纳米技术是20世纪80年代末延生并崛起的高科技,
3、它的基本涵义是指在纳米尺寸范围内研究物质的组成,通过直接操纵和安排原子、分子而创造新物质。纳米技术的出现标志着人类的认知领域已拓展至原子、分子水平,标志着人类科学技术的新时代纳米科技时代的来临。纳米技术是一门以许多现代先进科学技术为基础的科学技术,是现代科学(量子力学、分子生物学)和现代技术(微电子技术、计算机技术、高分辨显微技术和热分析技术)结合的产物。纳米技术在不断渗透到现代科学技术的各个领域的同时,形成了许许多多的与纳米技术相关的研究纳米自身规律的新兴学科,如:纳米物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学及纳米力学等,正是这些新兴学科构成了纳米科技的
4、主要内容。 纳米材料 纳米材料1992年国际纳米材料会议对纳米材料定义如下:一相任一维的尺寸达到100nm以下的材料为纳米材料[1]。由此可知,纳米材料的几何形状既可以是粒径小于100nm的零维纳米粉末,也可以是径向尺寸小于100nm的一维纳米纤维或二维纳米膜、三维纳米块体等。纳米材料的材质可以是金属或非金属;相结构可以是单相或多相;原子排列可以是晶态或非晶态。当物质进入纳米级后,其在催化、光、电、热力学等方面都出现特异化,这种现象被称为纳米效应。3纳米材料的特性[3-7]。 力学性质目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专
5、业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 纳米材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径要大,增殖后位错塞积的平均间距一般比晶粒大,其位错滑移和增殖不会发生,这就是纳米晶强化效应。由于纳米材料具有大的界面,界面的原子排列相当混乱,原子在外力变形的条件下容易迁移,表现出良好的韧性与延展性。应用纳米技术制成超细或纳米晶粒材料,其韧性、强度、硬度大幅提高。例如,氟化钙纳米材料在室温下可以大幅度弯曲而
6、不断裂;呈纳米晶粒的金属比传统粗晶粒金属硬3~5倍;纳米陶瓷具有良好的韧性,等等。 磁学性质目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 当代计算机硬盘系统的磁记录密度超过Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻
7、效应的读出磁头可将磁盘的记录密度提高到Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,可用作新型磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,在光磁系统、光磁材料中有广泛的应用。 电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属-绝缘体转变(SIMIT)。利用
此文档下载收益归作者所有