欢迎来到天天文库
浏览记录
ID:30355633
大小:34.63 KB
页数:29页
时间:2018-12-29
《纳米仿生材料最新研究成果》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划纳米仿生材料最新研究成果 仿生材料学研究进展 摘要:本文介绍了可降解塑料的研究进展,论述了仿生材料学研究进展及其种类,重点介绍了当前研究热点:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料… 关键词:表面仿生超疏水材料、聚乙烯三元复合仿生材料、植物叶片仿生伪装材料、仿生层状结构壳聚糖医用材料 1.引言 仿生材料学以阐明生物体材料结构与形成过程为目
2、标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的
3、业务技能及个人素质的培训计划 2.仿生材料我们在现实生活中接触过许多动物与植物,它们都属于生物的范畴。在地球上所有生物都是由理想的无机或有机材料通过组合而形成.动植物为了铸造自己身体所用的材料在有机系列里有纤维素、木质素、甲壳质、蛋白质和核酸等等,其构造非常复杂。许多生物体的某些构成材料是我们完全不知道的,这些材料大多数是在常温常压的条件下形成,并能发挥出特有的性能。当人们对这些生物现象有了充分的理解之后,把它们应用于材料科学技术方面,就是仿生材料. 表面仿生超疏水材料目的-通过该培训员工可对保安行业有初步
4、了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 自然界中的超疏水现象近年来,基于仿生科学而进行的各种新型材料的开发和研究正在各个领域广泛开展,人们对于超疏水表面的研究就是受到荷叶“出淤泥而不染”这种现象的启发而不断发展起来的。固体表面的润湿性可以用表面和水的接触角来衡量,通常将接触角小于900的固体表面称为亲水表面,接触角大于900的表面称为疏水表面,而将接
5、触角大于150。的表面称为超疏水表面llI。自然界中,水滴在荷叶表面上可以自由滚动,当水滴滚动时可以将附着在表面上的灰尘等污染物带走,从而使表面保持清洁。因此,超疏水表面又被称为自清洁表面。20世纪90年代,德国波恩大学的植物学家WilhelmBarthlott针对荷叶表面不沾水这一特殊现象进行了一系列的实验,发现了荷叶的疏水性与自我洁净的关系,创建了“荷叶效应”(Lotuseffect)--i百-Jt21。此后,超疏水表面在世界范围内引起了极大的关注,并且逐渐成为仿生纳米材料技术中的热点之一。这种表面在国防、
6、工农业生产和日常生活等许多领域都有着极其重要的应用前景。例如,将其应用在高降雪地区的室外天线上,可以防止积雪,以保证信号畅通13J:用于石油管道中,可以防止石油对管道壁粘附;作为汽车、飞机、航空器等的挡风玻璃,不仅可以减少空气中灰尘等污染物的污染,还能够使其在高湿度环境或雨天保持干燥:用于水中运输工具或水下核潜艇上,可以减少水的阻力,提高行驶速度;用于微流体装置中,可以实现对流体的低阻力、无漏损传送;也可以用它来修饰纺织品,做防水和防污的服装等等。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发
7、展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 随着科学技术的发展,各种精密的检测手段不断涌现出来,人们发现荷叶表面微米结构的乳突上还存在着纳米结构,正是这种微纳米相间的阶层结构和表面蜡状物质的共同作用才使荷叶的表面具有了超疏水的特性。荷叶表面上这种超疏水性的形成原理,为人们构筑人工超疏水表面提供了指导作用。固体表面的润湿性是由固体表面的化学组成和微观几何结构所共同决定的。制备超疏水
8、表面可以从两个方面入手:一方面是使材料表面具有微细的粗糙结构;另一方面是用低表面能物质修饰材料表面。仅通过在光滑表面上修饰低表面能物质,通常只能使接触角增加到。因此,构建合适的表面粗糙结构是制备超疏水表面的关键。目前,制备超疏水固体表面粗糙结构的方法很多,如机械加工法、物理或化学气相沉积法、电化学方法、溶胶一凝胶法、模板法、激光或等离子体刻蚀法等。然而,现有的这些方法还存在着各自不同的
此文档下载收益归作者所有