线性回归(异方差地诊断、检验和修补)—spss操作

线性回归(异方差地诊断、检验和修补)—spss操作

ID:30273974

大小:347.00 KB

页数:8页

时间:2018-12-28

线性回归(异方差地诊断、检验和修补)—spss操作_第1页
线性回归(异方差地诊断、检验和修补)—spss操作_第2页
线性回归(异方差地诊断、检验和修补)—spss操作_第3页
线性回归(异方差地诊断、检验和修补)—spss操作_第4页
线性回归(异方差地诊断、检验和修补)—spss操作_第5页
资源描述:

《线性回归(异方差地诊断、检验和修补)—spss操作》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案线性回归(异方差的诊断、检验和修补)—SPSS操作首先拟合一般的线性回归模型,绘制残差散点图。步骤和结果如下:为方便,只做简单的双变量回归模型,以当前工资作为因变量,初始工资作为自变量。(你们自己做的时候可以考虑加入其他的自变量,比如受教育程度等等)Analyze——regression——linear将当前工资变量拉入dependent框,初始工资进入independent点击上图中的PLOTS,出现以下对话框:精彩文档实用标准文案以标准化残差作为Y轴,标准化预测值作为X轴,点击continue,再点击OK第一个表格输出的是模型拟合优度精彩文档实用标准文案,为0.775。

2、调整后的拟合优度为0.774.第二个是方差分析,可以说是模型整体的显著性检验。F统计量为1622.1,P值远小于0.05,故拒绝原假设,认为模型是显著的。第三个是模型的系数,constant代表常数项,初始工资前的系数为1.909,t检验的统计量为40.276,通过P值,发现拒绝原假设,认为系数显著异于0。以上是输出的残差对预测值的散点图,发现存在喇叭口形状,暗示着异方差的存在,故接下来进行精彩文档实用标准文案诊断,一般需要诊断异方差是由哪个自变量引起的,由于这里我们只选用一个变量作为自变量,故认为异方差由唯一的自变量“初始工资”引起。接下来做加权的最小二乘法,首先计算权数。Analy

3、ze——regression——weightestimation再点击options,精彩文档实用标准文案点击continue,再点击OK,输出如下结果:由于结果比较长,只贴出一部分,第二栏的值越大越好。所以挑出来的权重变量的次数为2.7。得出最佳的权重侯,即可进行回归。Analyze——regression——linear精彩文档实用标准文案继续点击save,在上面两处打勾,点击continue,点击ok精彩文档实用标准文案这是输出结果,和之前同样的分析方法。接下需要绘制残差对预测值的散点图,首先通过transform里的compute计算考虑权重后的预测值和残差。精彩文档实用标准文

4、案以上两个步骤后即可输出考虑权重后的预测值和残差值然后点击graph,绘制出的散点图如下:精彩文档

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。