材料成形原理已知受力物体内一点应力张量为,20,斜截面上的全应力

材料成形原理已知受力物体内一点应力张量为,20,斜截面上的全应力

ID:30255880

大小:22.97 KB

页数:18页

时间:2018-12-28

材料成形原理已知受力物体内一点应力张量为,20,斜截面上的全应力_第1页
材料成形原理已知受力物体内一点应力张量为,20,斜截面上的全应力_第2页
材料成形原理已知受力物体内一点应力张量为,20,斜截面上的全应力_第3页
材料成形原理已知受力物体内一点应力张量为,20,斜截面上的全应力_第4页
材料成形原理已知受力物体内一点应力张量为,20,斜截面上的全应力_第5页
资源描述:

《材料成形原理已知受力物体内一点应力张量为,20,斜截面上的全应力》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划材料成形原理已知受力物体内一点应力张量为,20,斜截面上的全应力目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  应力张量的认识本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到后来逐渐认识的过程。相关还有:Lev

2、y-Mises理论的思考从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。初始,以一个基本定义记住了它,进而有过疑惑,随着矩阵论的学习又有了新的认识。曾经就有记录下对其理解的想法,但因思路尚未完善而一再搁置;直到今天重新想起,完成了方向余弦作为线性空间的证明,才终于开始详细记录。我将这部分思考分为以下三部分:应力张量的认识应力张量的认识应力张量的认识本文介绍第一部分应力的基本知识和常规认识。应力初中物理就已知道,因外力作用而在物体内部产生的力成为内力。单位面积上的内力即是应力,表征内力的强度。为了研究某一点P处的应力,用某个截面在P点处

3、切开物体,如下图所示。根据定义可以得到P点的正应力σ、切应力τ,他们的合成即为全应力T。需要注意的是,一个确定的截面对应了一组正应力和切应力。但是过P点有无数的截面,那么如何才能真正描述P点的应力状态呢?应力状态点的应力状态是受力物体内某一点各个截面上应力的变化情况。上面已经意识到过一点点有无数的截面,只有任意截面上的应力分量都可以确定,才可以说应力状态是确定的。通常在无数的截面中,任意取三个互相垂直的截面,并以他们的法线方向建立笛卡尔坐标系。也即在P点截取一个无限小的平行六面体,称为单元体。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展

4、的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  单元体无限小,视为一点,因此单元体上相互平行的两个平面视为过该点的同一平面,也即他俩的应力是相同的。这样就只用三个互相垂直的截面上的应力来分析问题。由于单元体处于静力平衡状态,由绕各轴合力矩为零可以得到切应力互等定律。问题:既然单元体上相互平行的两个平面视为过该点的同一平面,那为什么上图平行的平面上应力是相反的?单元体上相互平行的两个平面视为过该点的同一平面,但是分别是被截开的的两部分

5、的平面,截开前他们是重合的,截开后成为了两部分各自的表面,而外表面是有方向的。所以,从各自的方向上来看,应力方向还是相同的。应力张量根据上面的微单元体上的应力分量,是否可以求出任意截面的应力分量?答案是肯定的。根据三个方向的静力平衡就可以列式计算得到上图的任意的法向为(n1,n2,n3)的截面上的应力分量。三个互相垂直的截面上的9个应力分量可以确定任意截面的应力,也就是说可以确定一点的应力状态了。同时从这三个截面的选取上来看,他们和坐标系无关。于是我们把用上面九个应力分量作为一个整体来描述一点应力状态的物理量叫作应力张量,记作主应力如果作用在某一截面上的全应

6、力和这一截面垂直,即该截面上只有正应力,则这一截面称为主平面,其法线方向称为应力主方向,其上的应力称为主应力。如果三个坐标轴方向都是主方向,则称这一坐标系为主坐标系。求解方法依然是根据静力平衡条件。  应力张量不变量在求解主应力的过程中会得到以主应力为未知数的三次方程,叫做状态方程。状态方程的三个系数唯一由主应力确定,而一点的主应力是唯一的,这样就得到了不随坐标变化的三个量,叫作应力张量不变量用一般应力表示为主切应力切应力有极值的截面叫主切应力平面,面上的切应力叫作主切应力。六个主切应力中绝对值最大的叫作最大切应力。通过计算可知,主切应力平面与主应力平面成4

7、5°夹角。由于塑性变形是由切应力引起的,所以最大切应力可以作为判断屈服的准则。应力张量分解将三个正应力的平均值叫作平均应力,静水应力,应力张量减去这部分后得到应力偏张量。应力偏张量同样有三个不变量。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划  应力张量分解的物理意义在于:物体在应力张量作用下的变形分为体积变化和形状变化两部分;前者取决于应力球张量,后这取决于应力偏张

8、量;体积变化表征弹性变形,当应力偏张量满足一定条件后

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。