欢迎来到天天文库
浏览记录
ID:30234892
大小:27.92 KB
页数:24页
时间:2018-12-28
《材料力学,就业方向》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划材料力学,就业方向 绪论 一、材料力学的发展 材料力学源于人们的生产经验,是生产经验的提炼和浓缩,同时形成理论后又应用于指导生产实践和工程设计。 公元前2250年,古巴比伦王汉谟拉比法典 公元1103年,宋代李诫《营造法式》 1638年,伽利略,梁的强度试验和计算理论 1678年,英国科学家的胡克定律 二、材料力学的任务 在构件能安全工作的条件下,以最经济的代价,为构件确定
2、合理的形状和尺寸,选择适当的材料,为构件的设计提供必要的理论基础和计算方法。 构件安全工作的条件有以下三条: 具有必要的强度,指构件抵抗破坏的能力。构件在外力作用下不会发生破坏或意外的断裂。 具有必要的刚度,指构件抵抗弹性变形的能力。构件在规定的使用条件下不会产生过份的变形。 具有必要的稳定性,指构件保持原始平衡构形的能力。构件在规定的使用条件下,不会发生失稳现象。 三、材料力学的研究对象目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保
3、其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 材料力学主要研究对象是构件中的杆以及由若干杆组成的简单杆系等。 杆件的形状与尺寸由其轴线和横截面确定。轴线通过横截面的形心,横截面与轴线正交。根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。 四、材料力学基本假设 材料力学中,构成构件的材料皆视为可变形固体。 均匀、连续假设:构件内任意一点的材料力学性能与该点位置无关,且毫无空隙地充满构件所
4、占据的空间。 各向同性假设:构件材料的力学性能没有方向性。 小变形假设:本课主要研究弹性范围内的小变形。小变形假设可使问题得到如下的简化: a).忽略构件变形对结构整体形状及荷载的影响; b).构件的复杂变形可处理为若干基本变形的叠加。 大多数场合局限于线性弹性 当以上条件部分不能满足时,须采用其他力学理论如结构力学、弹性力学、塑性力学、断裂力学、损伤力学、连续介质力学以及随着计算机技术的发展而越来越受到重视的计算力学等等。本课程材料力学是基础。 五、杆件的基本受力形式 杆件受外力作用
5、后发生的变形是多种多样的,但最基本的变形是以下四种:目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 拉伸(或压缩) 料所作的基本假设为均匀连续、各向同性、小变形且大多数情况为线弹性;材料力学研究的对象是杆件;杆件的基本受力形式是拉伸(或压缩)、剪切、扭转、弯曲。 第1章轴向拉伸与压缩 、轴向拉伸与压缩的概
6、念 工程范例:吊车梁的拉杆、吊运重物的钢丝绳、绗架杆件、柱 受力特征:作用于杆上的外力或其合力的作用线沿着杆件的轴线。 变形特征:杆件主要产生轴向伸长,受力简图如图1-1所示。 图轴向拉伸与压缩受力和变形示意图 、轴向拉伸和压缩时的内力、轴力图 内力的概念:物体内部一部分与另一部分的相互作用力,构件受到外力作用的同时,在内部产生相应内力。 在外力作用下构件发生变形,构件内部相邻各质点间沿力作用方向的相对位置发生变化,同时构件各质点之间产生附加内力,其作用是力图使各质点恢复其原始位置。
7、内力的计算方法—截面法:截面法是材料力学研究内力的一个基本方法,其步骤如下:目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 a)截开:在需求内力的截面处,将构件假想截分为两部分; b)代替:任取一部分为研究对象,弃去另一部分,并以内力代替弃去部分对留下部分的作用; c)平衡:对留下部分建立平衡方程,求出该截
8、面的内力。 拉压杆横截面上的内力特点:其作用线与杆轴线重合,称为轴力,用N表示。轴力N的正负号规定,以拉力为正,压力为负。 轴力图:表示沿杆件轴线各横截面上轴力变化规律的图线,轴力图以平行于杆轴线的x轴为横坐标,表示横截面位置,以N轴为纵坐标,表示横截面上的轴力 值。 、横截面上的应力 应力的概念 应力:截面内一点处内力的分布集度,单位是N/m2、N/mm2等。应力可分为正应力s和切应力t。正应力:??lim 切应力??lim?N?A?0?
此文档下载收益归作者所有