不定积分例的题目及问题详解

不定积分例的题目及问题详解

ID:30228374

大小:2.90 MB

页数:39页

时间:2018-12-28

不定积分例的题目及问题详解_第1页
不定积分例的题目及问题详解_第2页
不定积分例的题目及问题详解_第3页
不定积分例的题目及问题详解_第4页
不定积分例的题目及问题详解_第5页
资源描述:

《不定积分例的题目及问题详解》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路:被积函数,由积分表中的公式(2)可解。解:★(2)思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。解:★(3)思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。解:★(4)思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。解:★★(5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。解:★★(6)思路:注意到,根据

2、不定积分的线性性质,将被积函数分项,分别积分。解:注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。★(7)思路:分项积分。解:★(8)思路:分项积分。解:★★(9)思路:?看到,直接积分。解:精彩文档实用标准文案★★(10)思路:裂项分项积分。解:★(11)解:★★(12)思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。解:★★(13)思路:应用三角恒等式“”。解:★★(14)思路:被积函数,积分没困难。

3、解:★★(15)思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。解:★★(16)思路:应用弦函数的升降幂公式,先升幂再积分。解:★(17)思路:不难,关键知道“”。解:★(18)思路:同上题方法,应用“”,分项积分。解:★★(19)思路:注意到被积函数,应用公式(5)即可。解:★★(20)思路:注意到被积函数,则积分易得。解:精彩文档实用标准文案★2、设,求。知识点:考查不定积分(原函数)与被积函数的关系。思路分析:直接利用不定积分的性质1:即可。解:等式两边对求导数得:★3、设的导函数为,求的原函数全体。知

4、识点:仍为考查不定积分(原函数)与被积函数的关系。思路分析:连续两次求不定积分即可。解:由题意可知,所以的原函数全体为:。★4、证明函数和都是的原函数知识点:考查原函数(不定积分)与被积函数的关系。思路分析:只需验证即可。解:,而★5、一曲线通过点,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。解:设曲线方程为,由题意可知:

5、,;又点在曲线上,适合方程,有,所以曲线的方程为★★6、一物体由静止开始运动,经秒后的速度是,问:(1)在秒后物体离开出发点的距离是多少?(2)物体走完米需要多少时间?知识点:属于最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。思路分析:求得物体的位移方程的一般式,然后将条件带入方程即可。解:设物体的位移方程为:,则由速度和位移的关系可得:,又因为物体是由静止开始运动的,。(1)秒后物体离开出发点的距离为:米;(2)令秒。2、求下列不定积分。知识点:(凑微分)第一换元积分法的练习。思

6、路分析:审题看看是否需要凑微分。直白的讲,凑微分其实就是看看积分表达式中,有没有成块的形式作为一个整体变量,这种能够马上观察出来的功夫来自对微积分基本公式的熟练掌握。此外第二类换元法中的倒代换法对特定的题目也非常有效,这在课外例题中专门介绍!★(1)思路:凑微分。解:精彩文档实用标准文案★(2)思路:凑微分。解:★(3)思路:凑微分。解:★(4)思路:凑微分。解:★(5)思路:凑微分。解:★★(6)思路:如果你能看到,凑出易解。解:★(7)思路:凑微分。解:★★(8)思路:连续三次应用公式(3)凑微分即可。解:★★(9

7、)思路:本题关键是能够看到是什么,是什么呢?就是!这有一定难度!解:★★(10)思路:凑微分。解:方法一:倍角公式。方法二:将被积函数凑出的函数和的导数。方法三:三角公式,然后凑微分。精彩文档实用标准文案★★(11)思路:凑微分:。解:★(12)思路:凑微分。解:★★(13)思路:由凑微分易解。解:★★(14)思路:凑微分。解:★★(15)思路:凑微分。解:★(16)思路:凑微分。解:★★(17)思路:经过两步凑微分即可。解:★★(18)思路:分项后分别凑微分即可。解:★★(19)思路:裂项分项后分别凑微分即可。解:精

8、彩文档实用标准文案★(20)思路:分项后分别凑微分即可。解:★(21)思路:分项后分别凑微分即可。解:★★(22)思路:裂项分项后分别凑微分即可。解:★(23)思路:凑微分。。解:★★(24)思路:降幂后分项凑微分。解:★★★(25)思路:积化和差后分项凑微分。解:★★★(26)思路:积化和差后分项凑微分。解:★★★(27)思路:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。