欢迎来到天天文库
浏览记录
ID:30224110
大小:914.50 KB
页数:16页
时间:2018-12-27
《陈雨涵《多元函数极值地解法与的应用》》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案多元函数条件极值的解法与应用陈雨涵【摘要】多元函数条件极值是多元函数微分学的重要组成部分,本文研究的是代入法、拉格朗日乘数法、标准量代换法、不等式法、二次方程判别式符号法、梯度法、数形结合法等方法在解多元函数条件极值问题上的运用,以及探讨多元函数条件极值在证明不等式、物理学、生产销售等问题上的应用.【关键词】极值;条件极值;拉格朗日乘数法;梯度法;应用1.引言多元函数条件极值是多元函数微分学的重要组成部分,它不仅在理论上有重要的应用,而且在其它学科及有关实际问题中有着广泛的应用,于是如何判定与求解多元函数条件极值就成为许多学者研究的问题,虽然以前也有不少学者研
2、究过,但多数还只是理论上的研究,实际利用方面的研究较少.如文[1]讨论了方向导数法在求解多元函数条件极值上应用,文[2]讨论了柯西不等式在求解一些特殊的多元函数条件极值问题时的应用.本文首先对多元函数条件极值的解题方法进行了归纳与总结,通过具体实例对各种解法进行分析类比,从中可以看到不同的条件极值问题可以有不同的解题方法,其中最常用的是拉格朗日乘数法,但对有些问题若能用一些特殊解法可以更简单.面对不同的极值问题如何采用最佳的解决方法是快速解题的关键.文章最后讨论了如何通过条件极值解决不等式证明、物理学、生产销售等实际应用问题.2.简单介绍多元函数极值与条件极值的有关概念2
3、.1函数的极值定义2.1.1设元函数在点的某个邻域内有定义,如果对该邻域内任一异于的点都有(或),则称函数在点有极大值(或极小值).极大值、极小值统称为极值,使函数取得极值的点称为极值点.2.2函数的条件极值定义2.2.1函数在个约束条件下的极值称为条件极值.3.多元函数普通极值存在的条件定理3.1(必要条件)若元函数在点存在偏导数,且在该点取得极值,则有备注:使偏导数都为的点称为驻点,但驻点不一定是极值点.定理3.2(充分条件)设元函数在附近具有二阶连续偏导数,且为的驻点.那么当二次型精彩文档实用标准文案正定时,为极小值;当负定时,为极大值;当不定时,不是极值.记,并记
4、,它称为的阶矩阵.对于二次型正负定的判断有如下定理:定理3.3若,则二次型是正定的,此时为极小值;若,则二次型是负定的,此时为极大值.特殊地,当时,有如下推论:推论3.1若二元函数某领域内具有一阶和二阶连续偏导数,且令则①当时,.②当时,没有极值.③当时,不能确定,需另行讨论.4.介绍多元函数条件极值的若干解法4.1代入消元法通过一个量用其它量代替的方法达到降元效果,将条件极值化为无条件极值问题来解决一些较为简单的条件极值问题,这种方法适用于约束函数较为简单的条件极值求解,有些条件极值很难化为无条件极值来解决.例4.1.1求函数在条件下的极值.解由解得,将上式代入函数,得
5、精彩文档实用标准文案解方程组得驻点,,在点处,,所以不是极值点从而函数在相应点处无极值;在点处,,又,所以为极小值点因而,函数在相应点处有极小值极小值为.4.2拉格朗日乘数法拉格朗日乘数法是求多元函数条件极值的一种常用方法,特别是在约束条件比较多的情况下使用拉格朗日乘数法更方便适用.求目标函数在条件函数组限制下的极值,若及有连续的偏导数,且Jacobi矩阵的秩为,则可以用拉格朗日乘数法求极值.首先,构造拉格朗日函数精彩文档实用标准文案然后,解方程组从此方程组中解出驻点的坐标,所得驻点是函数极值的可疑点,需进一步判断得出函数的极值.定理4.2.1(充分条件)设点及个常数满足
6、方程组,则当方阵为正定(负定)矩阵时,为满足约束条件的条件极小(大)值点,因此为满足约束条件的条件极小(大)值.例4.2.1求椭球在第一卦限内的切平面与三坐标面所围成的四面体的最小体积.解此椭球在点处的切平面为化简,得此平面在三个坐标轴上的截距分别为:则此切平面与三坐标面所围成的四面体的体积由题意可知,体积存在最小值,要使最小,则需最大;即求目标函数在条件下的最大值,其中,拉格朗日函数为精彩文档实用标准文案由解得;说明:以上介绍的两种方法为解多元函数条件极值的常用方法,但在实际解题过程中,我们还可以根据多元函数的一些特点选择其它一些特殊解法来快速解题,如标准量代换法、不等
7、式法、二次方程判别式法、梯度法、数形结合法.4.3标准量代换法求某些有多个变量的条件极值时,我们可以选取某个与这些变量有关的量作为标准量,称其余各量为比较量,然后将比较量用标准量与另外选取的辅助量表示出来,这样就将其变为研究标准量与辅助量间的关系了.如果给定条件是几个变量之和的形式,一般设这几个量的算术平均数为标准量.例4.3.1设,求的最小值.解取为标准量,令,则(为任意实数),从而有等号当且仅当,即时成立,所以的最小值为.4.4不等式法4.4.1利用均值不等式均值不等式是常用的不等式,其形式为,精彩文档实用标准文案这里,且
此文档下载收益归作者所有