an introduction to mathematical optimal control theory

an introduction to mathematical optimal control theory

ID:30169264

大小:999.93 KB

页数:125页

时间:2018-12-27

an introduction to mathematical optimal control theory_第1页
an introduction to mathematical optimal control theory_第2页
an introduction to mathematical optimal control theory_第3页
an introduction to mathematical optimal control theory_第4页
an introduction to mathematical optimal control theory_第5页
资源描述:

《an introduction to mathematical optimal control theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ANINTRODUCTIONTOMATHEMATICALOPTIMALCONTROLTHEORYVERSION0.1ByLawrenceC.EvansDepartmentofMathematicsUniversityofCalifornia,BerkeleyChapter1:IntroductionChapter2:Controllability,bang-bangprincipleChapter3:Lineartime-optimalcontrolChapter4:ThePontryaginMaximumPrincipleChapter5:Dynamicprogrammi

2、ngChapter6:GametheoryChapter7:IntroductiontostochasticcontroltheoryAppendix:ProofsofthePontryaginMaximumPrincipleExercisesReferences1PREFACEThesenotesbuilduponacourseItaughtattheUniversityofMarylandduringthefallof1983.MygreatthanksgotoMartinoBardi,whotookcarefulnotes,savedthemalltheseyears

3、andrecentlymailedthemtome.FayeYeagertypeduphisnotesintoafirstdraftoftheselecturesastheynowappear.Ihaveradicallymodifiedmuchofthenotation(tobeconsistentwithmyotherwrit-ings),updatedthereferences,addedseveralnewexamples,andprovidedaproofofthePontryaginMaximumPrinciple.Asthisisacourseforundergr

4、aduates,Ihavedispensedincertainproofswithvariousmeasurabilityandcontinuityissues,andascompensationhaveaddedvariouscritiquesastothelackoftotalrigor.ScottArmstrongreadoverthenotesandsuggestedmanyimprovements:thanks.Thiscurrentversionofthenotesisnotyetcomplete,butmeetsIthinktheusualhighstanda

5、rdsformaterialpostedontheinternet.Pleaseemailmeatevans@math.berkeley.eduwithanycorrectionsorcomments.2CHAPTER1:INTRODUCTION1.1.Thebasicproblem1.2.Someexamples1.3.Ageometricsolution1.4.Overview1.1THEBASICPROBLEM.DYNAMICS.Weopenourdiscussionbyconsideringanordinarydifferentialequation(ODE)havi

6、ngtheformx˙(t)=f(x(t))(t>0)(1.1)0x(0)=x.Weareheregiventheinitialpointx0∈Rnandthefunctionf:Rn→Rn.Theunknownisthecurvex:[0,∞)→Rn,whichweinterpretasthedynamicalevolutionofthestateofsome“system”.CONTROLLEDDYNAMICS.Wegeneralizeabitandsupposenowthatfdependsalsouponsome“control”parametersbelongi

7、ngtoasetA⊂Rm;sothatf:Rn×A→Rn.Thenifweselectsomevaluea∈Aandconsiderthecorrespondingdynamics:x˙(t)=f(x(t),a)(t>0)x(0)=x0,weobtaintheevolutionofoursystemwhentheparameterisconstantlysettothevaluea.Thenextpossibilityisthatwechangethevalueoftheparameterasthesysteme

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。