坐标系统详解(1)

坐标系统详解(1)

ID:30106816

大小:86.05 KB

页数:7页

时间:2018-12-27

坐标系统详解(1)_第1页
坐标系统详解(1)_第2页
坐标系统详解(1)_第3页
坐标系统详解(1)_第4页
坐标系统详解(1)_第5页
资源描述:

《坐标系统详解(1)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、【转载】坐标系统详解2008年03月24日星期一11:26坐标系统是GIS图形显示、数据组织分析的基础,所以建立完善的坐标投影系统对于GIS应用来说是非常重要的,不过由于搞清楚那么多的投影类型、坐标系统是一件很麻烦的事情。上大学那会儿没有好好学地图学(好好学了估计也不会考虑那么多,嘿嘿。),所以现在不得不补补了~~(PS:下周就能回家了,昨天刚买好了火车票,正高兴着呢。。都差不多一年没回家了。。好了,言归正传,下面整理了些东西,搞搞清楚GIS的坐标投影系统,目的呢就是开发一个实现坐标投影转换的小模块--这是后

2、话,先把基础的东西搞清楚..)  GIS的坐标系统呢大致有三种(本人认为的国外国内做GIS最好的ESRI和Supermap都是这么分的):PlannarCoordinateSystem(平面坐标系统,或者Custom用户自定义坐标系统)、GeographicCoordinateSystem(地理坐标系统)、ProjectionCoordinateSystem(投影坐标系统)。这三者并不是完全独立的,而且各自都有各自的应用特点。如平面坐标系统常常在小范围内不需要投影或坐标变换的情况下使用,在Arcgis中,默认

3、打开数据不知道坐标系统信息的情况下都当作CustomCS处理,也就是平面坐标系统。而地理坐标系统和投影坐标系统又是相互联系的,地理坐标系统是投影坐标系统的基础之一,二者的区别联系在下文详述,下面先搞清楚几个基本的概念(参考自Jetz大侠的博客:http://jetz.cnblogs.com/category/24847.html):1、椭球面(Ellipsoid)地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京

4、54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。采用的3个椭球体参数如下(源自“全球定位系统

5、测量规范GB/T18314-2001”):椭球体长半轴短半轴Krassovsky63782456356863.0188IAG7563781406356755.2882WGS8463781376356752.3142理解:椭球面是用来逼近地球的,应该是一个立的椭圆旋转而成的。2、大地基准面(Datum)   椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo1942、非洲索马里的Afgooye基准面都采

6、用了Krassovsky椭球体,但它们的大地基准面显然是不同的。在目前的GIS商用软件中,大地基准面都通过当地基准面向WGS84的转换7参数来定义,即三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最后是比例校正因子,用于调整椭球大小。北京54、西安80相对WGS84的转换参数至今没有公开,实际工作中可利用工作区内已知的北京54或西安80坐标控制点进行与WGS84坐标值的转换,在只有一个已知控制点的情况下(

7、往往如此),用已知点的北京54与WGS84坐标之差作为平移参数,当工作区范围不大时,如青岛市,精度也足够了。   以(32°,121°)的高斯-克吕格投影结果为例,北京54及WGS84基准面,两者投影结果在南北方向差距约63米(见下表),对于几十或几百万的地图来说,这一误差无足轻重,但在工程地图中还是应该加以考虑的。     输入坐标(度)北京54高斯投影(米)WGS84高斯投影(米)纬度值(X)3235436643543601经度值(Y)1212131099421310997理解:椭球面和地球肯定不是完全贴

8、合的,因而,即使用同一个椭球面,不同的地区由于关心的位置不同,需要最大限度的贴合自己的那一部分,因而大地基准面就会不同。3、高斯投影(GaussProjection)(1)高斯-克吕格投影性质   高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(CarlFriedrichGauss,177

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。