an introduction to infinite dimensional analysis (giuseppe da prato)

an introduction to infinite dimensional analysis (giuseppe da prato)

ID:30010283

大小:2.12 MB

页数:215页

时间:2018-12-26

an introduction to infinite dimensional analysis (giuseppe da prato)_第1页
an introduction to infinite dimensional analysis (giuseppe da prato)_第2页
an introduction to infinite dimensional analysis (giuseppe da prato)_第3页
an introduction to infinite dimensional analysis (giuseppe da prato)_第4页
an introduction to infinite dimensional analysis (giuseppe da prato)_第5页
资源描述:

《an introduction to infinite dimensional analysis (giuseppe da prato)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、GiuseppeDaPratoAnIntroductiontoInfinite-DimensionalAnalysis123GiuseppeDaPratoScuolaNormaleSuperiorePiazzadeiCavalieri756100Pisa,Italye-mail:daprato@sns.itMathematicsSubjectClassification(2000):37L55,60H10,46T12,60J65,60J25LibraryofCongressControlNumber:20069

2、24566ISBN-103-540-29020-6SpringerBerlinHeidelbergNewYorkISBN-13978-3-540-29020-9SpringerBerlinHeidelbergNewYorkThisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse

3、ofillustrations,recitation,broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Dupli-cationofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermissionforusem

4、ustalwaysbeobtainedfromSpringer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw.SpringerisapartofSpringerScience+BusinessMediaspringer.com©Springer-VerlagBerlinHeidelberg2006PrintedinGermanyTheuseofgeneraldescriptivenames,registerednames,tradema

5、rks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.Coverdesign:ErichKirchner,HeidelbergTypesettingbytheauthorandSPIPublisherServicesusingaS

6、pringerLATEXmacropackagePrintedonacid-freepaper1150058241/sz-543210PrefaceThisvolumeisarevisedandextendedversionofthelecturenotesconcerningaone-yearcourseoninfinitedimensionalanalysisdeliveredatScuolaNormaleSuperioreinrecentyears,see[6].Thelecturesweredesign

7、edforanaudiencehavingbasicknowledgeoffunctionalanalysisandmeasuretheorybutnotfamiliarwithprobabilitytheory.Themainaimwastogiveanintroductiontotheanalysisinasep-arableHilbertspaceHofinfinitedimensions.ItiswellknownthatthereisnonaturalanalogueoftheLebesguemeas

8、ureonaninfinitedi-mensionalHilbertspace.AnaturalsubstituteisprovidedbyGaussianmeasureswhichareintroducedinChapter1.Theyarefirstdefinedonafinitedimensionalspaceandthen,throughaninfiniteproductofmeasures,onth

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。