东方数学讲义电子版高等数学考研讲义第七章

东方数学讲义电子版高等数学考研讲义第七章

ID:29967688

大小:621.00 KB

页数:23页

时间:2018-12-25

东方数学讲义电子版高等数学考研讲义第七章_第1页
东方数学讲义电子版高等数学考研讲义第七章_第2页
东方数学讲义电子版高等数学考研讲义第七章_第3页
东方数学讲义电子版高等数学考研讲义第七章_第4页
东方数学讲义电子版高等数学考研讲义第七章_第5页
资源描述:

《东方数学讲义电子版高等数学考研讲义第七章》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、2010新东方数学讲义电子版高等数学考研讲义第七章多元函数积分学§7.1二重积分(甲)内容要点一、在直角坐标系中化二重积分为累次积分以及交换积分顺序序问题模型I:设有界闭区域其中在上连续,在上连续,则模型II:设有界闭区域其中在上连续,在上连续则关于二重积分的计算主要根据模型I或模型II,把二重积分化为累次积分从而进行计算,对于比较复杂的区域D如果既不符合模型I中关于D的要求,又不符合模型II中关于D的要求,那么就需要把D分解成一些小区域,使得每一个小区域能够符合模型I或模型II中关于区域的要求,利用二重积

2、分性质,把大区域上二重积分等于这些小区域上二重积分之和,而每个小区域上的二重积分则可以化为累次积分进行计算。在直角坐标系中两种不同顺序的累次积分的互相转化是一种很重要的手段,具体做法是先把给定的累次积分反过来化为二重积分,求出它的积分区域D,然后根据D再把二重积分化为另外一种顺序的累次积分。二、在极坐标系中化二重积分为累次积分129在极坐标系中一般只考虑一种顺序的累次积分,也即先固定对进行积分,然后再对进行积分,由于区域D的不同类型,也有几种常用的模型。模型I设有界闭区域其中在上连续,在上连续。则模型II设

3、有界闭区域其中在上连续,在上连续。则(乙)典型例题一、二重积分的计算例1计算,其中D由y=x,y=1和y轴所围区域解:如果那么先对求原函数就不行,故考虑另一种顺序的累次积分。这时先对x积分,当作常数处理就可以了。原式=例2计算129解:原式=例3求解一:解二:由积分区域对称性和被积函数的奇偶性可知129二、交换积分的顺序例1交换解原式=其中D由和以及所围的区域由因此按另一顺序把二重积分化为累次积分对三块小区域得原式例2设证明:交换积分次序令129三、二重积分在几何上的应用1、求空间物体的体积例1求两个底半径

4、为R的正交圆柱面所围立体的体积解设两正交圆柱面的方程为,它们所围立体在第一卦限中的那部分体积其中D为因此而整个立体体积由对称性可知例2求球面所围(包含原点那一部分)的体积解其中D为xy平面上与x轴所围平面区域用极坐标系进行计算2、求曲面的面积(数学一)§7.2三重积分(数学一)(甲)内容要点129一、三重积分的计算方法1、直角坐标系中三重积分化为累次积分(1)设是空间的有界闭区域其中D是xy平面上的有界闭区域,在D上连续函数上连续,则(2)设其中D(z)为竖坐标为z的平面上的有界闭区域,则2、柱坐标系中三重

5、积分的计算相当于把(x,y)化为极坐标()而z保持不变3、球坐标系中三重积分的计算(乙)典型例题一、有关三重积分的计算例1计算,其中由曲面所围的区域解129例2计算,其中由曲面所围的区域解令则例3计算所围的区域解用球坐标例4计算解二、在物理上的应用例1求椭圆锥面解设重心坐标()物体所占空间区域为由对称性可知由锥体体积公式可知令129而因此,重心坐标例2设有一半径为R的球体,是球表面上的一个定点,球体上任一点的密度与该点到的距离平方成正比(比例系数k>0),求球体重心的位置解一:设球面方程为为(R,0,0),

6、球体的重心坐标为()由对称性可知由区域的对称性和函数的奇偶性,则有于是因此解二:设球面坐标,(0,0,0),重心坐标()由对称性可知129于是§7.3曲线积分(数学一)(甲)内容要点一、第一类曲线积分(对弧长的曲线积分)参数计算公式我们只讨论空间情形(平面情形类似)设空间曲线L的参数方程则(假设)这样把曲线积分化为定积分来进行计算二、第二类曲线积分(对坐标的曲线积分)参数计算公式我们只讨论空间情形(平面情形类似)设空间有向曲线L的参数方程129这样把曲线积分化为定积分来计算。值得注意:如果曲线积分的定向相反

7、,则第二类曲线积分的值差一个负号,而第一类曲线积分的值与定向无关,故曲线不考虑定向。三、两类曲线积分之间的关系空间情形:设L=为空间一条逐段光滑有定向的曲线,在L上连续,则四、格林公式关于平面区域上的二重积分和它的边界曲线上的曲线之间的关系有一个十分重要的定理,它的结论就是格林公式。定理1、(单连通区域情形)设平面上有界闭区域D由一条逐段光滑闭曲线L所围的单连通区域,当沿L正定向移动时区域D在L的左边,函数在D上有连续的一阶偏导数,则有五、平面上曲线积分与路径无关的几个等价条件设P,Q在单连通区域D内有一阶

8、连续偏导数,则下面几个条件彼此等价1.任意曲线L=AB在D内与路径无关2.D内任意逐段光滑闭曲线C,都有3.成立4.D内处处有(乙)典型例题一、用参数公式直接计算例计算曲线积分,其中L是曲线,从Z轴正向往负向看L的方向是顺时针方向。解:曲线L是圆柱面和平面129的交线,是一个椭圆周,它的参数方程(不是唯一的选法)最简单可取,,,根据题意规定L的定向,则从变到0,于是二、用格林公式等性质来计算曲线积分例1、求,其中

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。