数学建模论文-校园公交车调度问题

数学建模论文-校园公交车调度问题

ID:29916698

大小:1.87 MB

页数:34页

时间:2018-12-25

数学建模论文-校园公交车调度问题_第1页
数学建模论文-校园公交车调度问题_第2页
数学建模论文-校园公交车调度问题_第3页
数学建模论文-校园公交车调度问题_第4页
数学建模论文-校园公交车调度问题_第5页
资源描述:

《数学建模论文-校园公交车调度问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、西南交通大学2012年新秀杯数学建模竞赛题目:A题组别:大二组参赛队员1参赛队员2参赛队员3姓名学号学院专业电话Email西南交通大学教务处西南交通大学实验室及设备管理处西南交通大学数学建模创新实践基地1校园通行车路线的设计摘要本文主要研究的是校园交通车的站点设置、在固定停车和招手即停两种模式结合下的运载能力、运行路线和时间安排以及相应行驶方案的规划问题。问题一中,我们对校园通行车现有行车路线网络和常停站点进行了调查和分析。首先,在数据处理阶段,将站点实体间的线路选择抽象为图论最短路模型,用Matlab软件画出三

2、条主要的行车线路,然后利用GIS空间分析方法解决单个交通线路上站点规划问题。该方法依据乘客出行时间最短确定单个线路上的站点个数,结合GIS缓冲区分析和叠合分析,在路线上做站点设置的适宜性讨论,提出基于最优化理论和GIS空间分析技术的站点规划方法,确定站点的位置,从而提供一种可行的行驶方案。问题二中,考虑固定停车和招手即停相结合的方案,我们首先将最佳行驶路线定义为车辆运行时间最短的路线,将图论中经典的Dijkstra算法(单源最短路径)进行改进,结合哈密尔顿图,以结点之间的时间作为权数,利用C++编程得到最佳推销员

3、回路,也就是通行车行驶的最佳路径。考虑到招手即停模式具有极大的随机性,为了便于调度,我们首先对乘车人次密度分布进行了调查和分析,并通过随机模拟出概率分布值较大的区域,将其抽象为一假想固定停车点,这样就将模型简化为固定停车点最佳行驶路径的问题。根据已得到的乘车时段分布规律和学校实际的作息时间表,按照模糊聚类分析法将一工作日数单位时间段划分为更概括的高峰期、低潮期和一般期,并应用Matlab中的fgoalattain进行非线性规划求出实际发车数,以及应用时间步长法估计发车间隔,从而给出两种模式结合下通行车每周运行的车

4、辆数、路线和时刻表。问题三中,我们首先对校区师生乘车需求人数进行了描述性统计,从乘车人数的均值、方差、峰度以及正态性四个角度对样本进行检测,找到相关的分布规律与结论,即每日在各时段中的乘车人数分布相似。随后,我们以ANOVA方差检验、组内与组间均值比较以及标准误差分析为手段,进一步验证了所得结论的准确性。并且以此建立较为理想化的整数规划模型,将全局约束以发车时间划分为几个高峰时段,用Lingo软件在个高峰时段约束中全局最优解,从而得到在已知行驶方案下校园通行车的运载能力。本文建立的行驶方案模型能与实际紧密联系,结

5、合校园实际情况对问题进行求解,并在模型扩展中利用计算机编程和仿真软件对所得结果和调度方案进行分析和评价,使得模型具有很好的通用性和推广性。关键字:站点选址最优化原理GIS模糊聚类非线性规划图论1问题重述西南交通大学犀浦校区位于成都市西北郫县犀浦镇,紧靠成都市外环线500米生态带,距市中心约12公里,校园占地约3000亩。犀浦校区的规划和建设都强调和突出“自然、人文”的先进理念,按照“一轴二带三环六区”的规划骨架,由南至北,逐步展开的。从2004年第一批学生入住以来,犀浦校区的规模日渐扩大并趋于成熟。但是由于校区面

6、积过大,出现了师生出行难,上课、回寝室、出校等所花时间较多等问题。为解决这一问题,校园内出现了便捷通行车,师生只用花费一元钱就可以在校内往返。目前,这种通行车采取招手即停的方式,校园内的任意地点都基本可以到达,但是当规模进一步扩大,管理更加规范后,可能需要考虑固定班次和行车路线。题图2给出了交大犀浦校区的平面地图,利用数学模型研究以下问题:1、请在校园内设置一些固定停车点,并说明其合理性;2、将固定停车和招手即停两种模式结合起来,给出每周通行车从上午7点到晚上10点的运行车辆数、运行路线及时刻表;3、预测校园通行

7、车在您安排的行驶方案下的运载能力。2问题分析问题一:影响固定停车点分布的主要因素有通行车的数量、乘客人数分布与到站规律、交通流量及线路上的其他随机因素对车辆运行的干扰。一般来说,站点安排应考虑到以下两点:1)使乘客的出行总时间降到最低2)固定停车点附近的所有乘客到达站点的总路程最短本节就此问题仅对最短通行时间路径进行讨论,即在所用时间最短的前提下,求解所经过的道路点。问题二:考虑固定停车和招手即停两种模式结合,该情况的影响因子很多,且各因素都是随机的。因此,必须对模型做一定的简化。首先,我们搜集了北区第一讲课之前

8、乘车高峰时间段及乘车人数的统计数据并进行了描述性统计,由对样本的分析结果找到相关的人流密度分布规律,且通过模糊聚类分析对时间段进行划分,假设每日各时段的乘车人数分布相似。随后,通过检验与误差分析进一步验证所得结论的准确性,为以后的分析和建模做好准备。之后,结合图论中的Dijkstra算法和哈密尔顿圈问题分析,得出适合该问题求解的最佳路径模型,根据已得到的乘车时段分布规律和

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。