欢迎来到天天文库
浏览记录
ID:29887712
大小:20.52 KB
页数:11页
时间:2018-12-24
《光的等厚干涉实验总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划光的等厚干涉实验总结 大连理工大学 大学物理实验报告 院材料学院专业材料物理班级0705姓名童凌炜学号XX67025实验台号实验时间XX年11月04日,第11周,星期二第5-6节 实验名称光的等厚干涉 教师评语 实验目的与要求: 1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。3.掌握读数显微镜的使用方法。 实验原理
2、和内容:1.牛顿环目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面
3、相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 设射入单色光的波长为λ,在距接触点rk处将产生第k级牛顿环,此处对应的空气膜厚度为dk,则空气膜上下两界面依次反射的两束光线的光程差为 ?k?2ndk? ? 2 式中,n为空气的折射率,λ/2是光从光疏介质射到光密介质的交界面上反射时产生的半波损失。 根据干涉条件,当光程差为波长的整数倍时干涉相长,反之为半波长奇数倍
4、时干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况: ?k?2dk? ? 2 2k? 2 (2k?1) ? 2 K=1,2,3,….,明环K=0,1,2,….,暗环目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 由上页图可得干涉环半径rk,膜的厚度dk与平凸透镜的曲率半径R之间的关系
5、22 R2?(R?dk)2?rk。由于dk远小于R,故可以将其平方项忽略而得到2Rdk?rk。结合以上 的两种情况公式,得到: rk?2Rdk?kR?,k?0,1,2...,暗环 由以上公式课件,rk与dk成二次幂的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰,一般选取暗环作为观测对象。 而在实际中由于压力形变等原因,凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面;另外镜面沾染回程会导致环中心成为一个光斑,这些都致使干涉环的级数和半径无法准确测量。而使用差值法消去附加的光程差,用测
6、量暗环的直径来代替半径,都可以减少以上类型的误差出现。由上可得: 2 D2m?D2n R? 4(m?n)? 式中,Dm、Dn分别是第m级与第n级的暗环直径,由上式即可计算出曲率半径R。由于式中使用环数差m-n代替了级数k,避免了圆环中心及暗环级数无法确定的问题。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划
7、 凸透镜的曲率半径也可以由作图法得出。测得多组不同的Dm和m,根据公式D 2m ?4R?m, 可知只要作图求出斜率4R?,代入已知的单色光波长,即可求出凸透镜的曲率半径R。2.劈尖 将两块光学平玻璃叠合在一起,并在其另一端插入待测的薄片或细丝,则在两块玻璃之间形成以空气劈尖,如下图所示: 当单色光垂直射入时,在空气薄膜上下两界面反射的两束光发生干涉;由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线,因此干涉条纹是一组明暗相间的等距平行条纹,属于等厚干涉。干涉条件如下: ?k?2dk?
8、可知,第k级暗条纹对应的空气劈尖厚度为 ? 2 ?(2k?1) ? 2 k=0,1,2,… dk?k目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划 ? 2 由干涉条件可知,当k=0时d0=0,对应玻璃板的搭接处,为零级
此文档下载收益归作者所有