欢迎来到天天文库
浏览记录
ID:29823434
大小:156.56 KB
页数:5页
时间:2018-12-24
《高中数学 第三章 函数的应用 3.2.2 函数模型的应用举例教学案新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3.1函数模型的应用举例使用说明与学法指导1、认真自学课本P101—P106,牢记基础知识,弄清课本例题,试完成教学案练习,掌握基本题型,再针对疑问重新研读课本.2、限时完成,书写规范,高效学习,激情投入.3、小组长在课中讨论环节要组织高效讨论,做到互学,帮学。一、学习目标1.会利用给定的函数模型解决实际问题.(重点)2.能够建立确定性函数模型解决问题及建立拟合函数模型解决实际问题.(重点、难点)二、问题导学(自学课本后,请解答下列问题)教材整理 函数模型的应用阅读教材P101~P106,完成下列问题.1.常见的函数模型函数模型函数解析式(1)正
2、比例函数模型f(x)=kx(k为常数,k≠0)(2)反比例函数模型(3)一次函数模型(4)二次函数模型(5)指数函数模型(6)对数函数模型(7)幂函数模型f(x)=axn+b(a,b,n为常数,a≠0,n≠1)(8)分段函数模型f(x)=2.建立函数模型解决问题的框图表示1.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=alog2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到( )A.300只 B.400只C.600只D.700只2.据
3、调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是( )A.y=0.3x+800(0≤x≤2000)B.y=0.3x+1600(0≤x≤2000)C.y=-0.3x+800(0≤x≤2000)D.y=-0.3x+1600(0≤x≤2000)三、合作探究一次函数、二次函数模型的应用例1:商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无
4、效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?变式1:某水厂的蓄水池中有400吨水,每天零点由池中放水向居民供水,同时以每小时60吨的速度向池中注水,若t小时内向居民供水总量为100(0≤t≤24),求供水几小时后,蓄水池中的存水量最少.指数函数、对数函数模型的应用例2:声强级Y(单位:分贝)由公式Y=10lg给出,其中I为声强(
5、单位:W/m2).(1)平时常人交谈时的声强约为10-6W/m2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y≤50分贝,已知熄灯后两个学生在宿舍说话的声强为5×10-7W/m2,问这两位同学是否会影响其他同学休息?变式2:目前某县有100万人,经过x年后为y万人.如果年平均增长率是1.2%,请回答下列问题:(1)写出y关于x的函数解析式;(2)计算10年后该县的人口总数(精确到0.1万人);(3)计算大约多少年后该县的人口总数将达到120万(精确到1年).分段函数模型的应用例3
6、:经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足于f(t)=(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.变式3:国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.【导学号:97030142】(
7、1)写出每人需交费用y关于人数x的函数;(2)旅行团人数为多少时,旅行社可获得最大利润?拟合数据构建函数模型例4:某企业常年生产一种出口产品,自2013年以来,每年在正常情况下,该产品产量平稳增长.已知2013年为第1年,前4年年产量f(x)(万件)如下表所示:x1234f(x)4.005.587.008.44(1)画出2013~2016年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2017年(即x=5)因受到某国对我国该产品反倾销的影响,年产量减少30%,试根据所建立的
8、函数模型,确定2017年的年产量为多少?变式4:某电视新产品投放市场后第一个月销售100台,第二个月销售20
此文档下载收益归作者所有