欢迎来到天天文库
浏览记录
ID:29806541
大小:267.06 KB
页数:3页
时间:2018-12-23
《高中数学 2.3 数学归纳法(1)学案 新人教a版选修2-2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、河北省唐山市开滦第二中学高中数学2.3数学归纳法(1)学案新人教A版选修2-2【学习目标】1.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤;2.能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写;3.数学归纳法中递推思想的理解.【学习内容】一、课前预习(预习教材92-94页,找出疑惑之处)复习1:在数列中,,先算出a2,a3,a4的值,再推测通项an的公式.复习2:,当n∈N时,是否都为质数?二、课堂互动探究:典例精析变式训练※学习探究探究任务:数学归纳法问题:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是
2、什么?新知:数学归纳法两大步:(1)归纳奠基:证明当n取第一个值n0时命题成立;(2)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.原因:在基础和递推关系都成立时,可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.试试:你能证明数列的通项公式这个猜想吗?反思:数学归纳法是一种特殊的证明方法,主要用于研究与正整数有关的数学问题.关键:从假设n=k成立,证得n=k+1成立.※典型例题例1用数学归纳法证明变式:用数学归纳法证明小结:证n=k+1时,
3、需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.例2用数学归纳法证明:首项是,公差是的等差数列的通项公式是,前项和的公式是.变式:用数学归纳法证明:首项是,公比是的等差数列的通项公式是,前项和的公式是.()小结:数学归纳法经常证明数列的相关问题.动手试试练1.用数学归纳法证明:当为整数时,练2.用数学归纳法证明:当为整数时,三、总结提升学习小结1.数学归纳法的步骤2.数学归纳法是一种特殊的证明方法,主要用于研究与正整数有关的数学问题.知识拓展意大利数学家皮亚诺总结了正整数的有关性质,并提出了关于正整数的五条公理,后人称之为“皮亚诺公理”.数学归纳法的理
4、论依据是皮亚诺公理.三.课堂练习及课后作业1.用数学归纳法证明:,在验证时,左端计算所得项为A.1B.C.D.2.用数学归纳法证明时,从n=k到n=k+1,左端需要增加的代数式为A.B.C.D.3.设,那么等于()A.B.C.D.4.已知数列的前n项和,而,通过计算,猜想5.数列满足,且(),则.6.用数学归纳法证明:7.用数学归纳法证明:
此文档下载收益归作者所有