数学竞赛教案讲义(3)——函数

数学竞赛教案讲义(3)——函数

ID:29770678

大小:148.50 KB

页数:8页

时间:2018-12-23

数学竞赛教案讲义(3)——函数_第1页
数学竞赛教案讲义(3)——函数_第2页
数学竞赛教案讲义(3)——函数_第3页
数学竞赛教案讲义(3)——函数_第4页
数学竞赛教案讲义(3)——函数_第5页
资源描述:

《数学竞赛教案讲义(3)——函数》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第三章函数一、基础知识w.w.w.k.s.5.u.c.o.m定义1映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f:A→B为一个映射。定义2单射,若f:A→B是一个映射且对任意x,y∈A,xy,都有f(x)f(y)则称之为单射。定义3满射,若f:A→B是映射且对任意y∈B,都有一个x∈A使得f(x)=y,则称f:A→B是A到B上的满射。定义4一一映射,若f:A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1:A→B。定义5函数,映射f:A→B中

2、,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若x∈A,y∈B,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。集合{f(x)

3、x∈A}叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为{x

4、x≥0,x∈R}.定义6反函数,若函数f:A→B(通常记作y=f(x))是一一映射,则它的逆映射f-1:A→B叫原函数的反函数,通常写作y=f-1(x).这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x,y互换得y=f-1(x),最后指出反函数的定义w.w.

5、w.k.s.5.u.c.o.m域即原函数的值域。例如:函数y=的反函数是y=1-(x0).定理1互为反函数的两个函数的图象关于直线y=x对称。定理2在定义域上为增(减)函数的函数,其反函数必为增(减)函数。定义7函数的性质。(1)单调性:设函数f(x)在区间I上满足对任意的x1,x2∈I并且x1f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的

6、x∈D,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。(3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。定义8如果实数a

7、a

8、a≤x≤b,x∈R}记作闭区间[a,b],集合{x

9、a

10、a≤x

11、,集合{x

12、x>a}记作开区间(a,+∞),集合{x

13、x≤a}记作半开半闭区间(-∞,a].定义9函数的图象,点集{(x,y)

14、y=f(x),x∈D}称为函数y=f(x)的图象,其中D为f(x)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b>0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)与函数y=f(-x)的图象关于y轴对称;(5)与函数y=-f(-x)的图象关于原点成中心对称;(6)与函数y=f-1(x)的图象关于直线y

15、=x对称;(7)与函数y=-f(x)的图象关于x轴对称。定理3复合函数y=f[g(x)]的单调性,记住四个字:“同增异减”。例如y=,u=2-x在(-∞,2)上是减函数,y=在(0,+∞)上是减函数,所以y=在(-∞,2)上是增函数。注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。二、方法与例题1.数形结合法。例1求方程

16、x-1

17、=的正根的个数.例2求函数f(x)=的最大值。2函数性质的应用。例3设x,y∈R,且满足,求x+y.例4奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)<0,求a的取值范围。例5设f(x)

18、是定义在(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I0时,f(x)=x2,求f(x)在Ik上的解析式。例6解方程:(3x-1)()+(2x-3)(+1)=0.3.配方法。例7求函数y=x+的值域。4.换元法。例8求函数y=(++2)(+1),x∈[0,1]的值域。5.判别式法。例9求函数y=的值域。6.关于反函数。例10若函数y=f(x)定义域、值域均为R,且存在反函数。若f(x)在(-∞,+∞)上递增,求证:y=f-1(x)在(-∞,+∞)上也是增函数。例11设函数f(x)=,解方程:f

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。