欢迎来到天天文库
浏览记录
ID:29723943
大小:9.16 MB
页数:13页
时间:2018-12-22
《材料的光学性能测试》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、材料科学实验讲义(一级实验指导书)东华大学材料科学与工程中心实验室汇编2009年7月12一、实验目的和要求1、掌握透过率、全反射和漫反射测定的基本原理;2、掌握透过率、全反射和漫反射测定的操作技能;3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。二、实验原理光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光
2、学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。目前中高档的紫外-可见分光光度
3、计均可选配积分球附件来测定物质的漫反射光谱(UV-visdiffusereflenctancespectrum,UV-visDRS),UV-visDRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-visDRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍:1、有机物的紫外—可见吸收光谱:分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外—可见分光光度法是基于物质分子的紫外—可见
4、吸收光谱而建立的一种定性、定量分析方法。有机化合物此外吸收光谱(电子光谱)是由分子外层电子或价电子跃迁所产生的。按分子轨道理论,有机化合物分子中有:成键σ轨道,反键σ*轨道;成键π轨道,反键π*轨道(不饱和烃);另外还有非键轨道(杂原子存在)。各种轨道的能级不同,如图1所示。12图1有机物的电子跃迁相应的外层电子和价电子有三种:σ电子、π电子和n电子。通常情况下,电子处于低的能级(成键轨道和非键轨道)。当用合适能量的紫外光照射分子时,分子可能吸收光的能量,而又低能级跃迁到反键*轨道。在紫外可见光区,主要有下列几种跃迁类型:①N→V跃迁:电子又成键轨道跃迁到反键轨道,包括σ→σ
5、*;π→π*跃迁。②N→Q跃迁:分子中未成键的n电子跃迁到反键轨道,包括n→σ*;n→π*跃迁。③N→R跃迁:σ电子逐级跃迁到各高能级,最后脱离分子,使分子成为分子离子的跃迁。(光致电离)④电荷迁移跃迁:当分子形成配合物或分子内的两个大π体系相互接近时,外来辐射照射后,电荷可以由一部分转移到另一部分,而产生电荷转移吸收光谱。可见,有机化合物一般主要有4种类型的跃迁:n→π*、π→π*、n→σ*和σ→σ*。各种跃迁所对应的能量大小为n→π*<π→π*6、配位场跃迁。许多无机配合物有电荷迁移跃迁所产生的电荷迁移吸收光谱。电荷迁移跃迁:指络合物吸收了可见-紫外光后,电子从中心离子的某一轨道跃迁到配位体的某一轨道,或从配位体的某一轨道跃迁到与中心离子的某一轨道。所产生的吸收光谱称为电荷迁移吸收光谱。(相当于内氧化还原反应)。一般可表示为:Mn+-Lb-®M(n+1)+-L(b+1)- (hν)[Fe3+-SCN-]2+®[Fe2+-SCN]2+(这就是配合物λmax=490nm为血红色原因)金属配合物的电荷转移吸收光谱,有三种类型:(1)电子从配体到金属离子:相当于金属的还原。(2)电子从金属离子到配体:产生这种跃迁的必要条件是7、金属离子容易被氧化(处于低氧化态),配位体具有空的反键轨道,可接受从金属离子转来的电子,如吡啶、2,2'-联吡啶,1,10-二氮杂菲及其衍生物等,这类试剂易与可氧化性的Ti(III)、Fe(II)、V(II)、Cu(I)等结合,生成有色配合物,反应过程中,电子从主要定域在金属离子的d轨道,转移到配位体的π轨道上。12(3)电子从金属到金属:配合物中含有两种不同氧化态的金属时,电子可在其间转移,这类配合物有很深的颜色,如普鲁士蓝KFe[Fe(CN)6],硅(磷、砷)钼蓝H8[SiMo2O5(Mo2O7)5
6、配位场跃迁。许多无机配合物有电荷迁移跃迁所产生的电荷迁移吸收光谱。电荷迁移跃迁:指络合物吸收了可见-紫外光后,电子从中心离子的某一轨道跃迁到配位体的某一轨道,或从配位体的某一轨道跃迁到与中心离子的某一轨道。所产生的吸收光谱称为电荷迁移吸收光谱。(相当于内氧化还原反应)。一般可表示为:Mn+-Lb-®M(n+1)+-L(b+1)- (hν)[Fe3+-SCN-]2+®[Fe2+-SCN]2+(这就是配合物λmax=490nm为血红色原因)金属配合物的电荷转移吸收光谱,有三种类型:(1)电子从配体到金属离子:相当于金属的还原。(2)电子从金属离子到配体:产生这种跃迁的必要条件是
7、金属离子容易被氧化(处于低氧化态),配位体具有空的反键轨道,可接受从金属离子转来的电子,如吡啶、2,2'-联吡啶,1,10-二氮杂菲及其衍生物等,这类试剂易与可氧化性的Ti(III)、Fe(II)、V(II)、Cu(I)等结合,生成有色配合物,反应过程中,电子从主要定域在金属离子的d轨道,转移到配位体的π轨道上。12(3)电子从金属到金属:配合物中含有两种不同氧化态的金属时,电子可在其间转移,这类配合物有很深的颜色,如普鲁士蓝KFe[Fe(CN)6],硅(磷、砷)钼蓝H8[SiMo2O5(Mo2O7)5
此文档下载收益归作者所有