基于fpga_的四相步进电机细分驱动电路设计

基于fpga_的四相步进电机细分驱动电路设计

ID:29711477

大小:278.50 KB

页数:5页

时间:2018-12-22

基于fpga_的四相步进电机细分驱动电路设计_第1页
基于fpga_的四相步进电机细分驱动电路设计_第2页
基于fpga_的四相步进电机细分驱动电路设计_第3页
基于fpga_的四相步进电机细分驱动电路设计_第4页
基于fpga_的四相步进电机细分驱动电路设计_第5页
资源描述:

《基于fpga_的四相步进电机细分驱动电路设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、基于FPGA的四相步进电机细分驱动电路设计黄伟平(浙江树人大学,浙江省杭州市)摘要:在采用步进电机驱动的机构中,为了提高定位精度,提出了一种基于FPGA的四相步进电机细分驱动电路的设计方案。采用正弦/余弦细分方案,通过嵌入cos/sin表格于FPGA中,合理控制步进电机四相绕组的电流,实现正弦细分驱动控制技术,减小了步距角、提高了步进分辨率。给出了FPGA软件设计,并在QuartusII中完成了仿真。仿真结果表明,PWM计数器模块,地址计数器模块,PWM波形ROM存储器模块,数字比较器模块,都可以由FPGA准确无误地产生,本系统最终现实对四相步进电机八细分驱动电路的设计。关键词:FPG

2、A;四相步进电机;细分;驱动电路引言步进电机是把脉冲信号转换成角位移或直线位移的执行元件,是一种输出与输入数字脉冲相对应的增量驱动元件。具有定位精度高、惯性小、无积累误差、启动性能好、易于控制、价格低廉及与计算机接口方便等优点,被广泛应用于数控系统中[1,2]。计算机技术的发展,促进了数字控制技术的发展。步进电机细分驱动技术可以减小步进电机的步距角,提高电机运行的平稳性,增加控制的灵活性等。利用FPGA中的嵌入式EAB可以构成存放电机各相电流所需的控制波形表,再利用数字比较器同步产生多路FPGA电流波形,对多相步进电机进行控制。若改变控制波形表的数据、增加计数器和比较器的位数,提高计数

3、精度,就可以提高PWM波形的细分精度,进而对步进电机的步进转角进行任意级细分,实现转角的精确控制。1.步进电机细分驱动原理图1四相步进电机八细分电流波形步进电机的驱动是靠给步进电机的各相励磁绕组轮流通以电流,实现步进电机内部磁场合成方向的变化来使步进电机转动的。设矢量Ta、Tb、Tc、Td为步进电机A、B、C、D四相励磁绕组分别通电时产生的磁场矢量;Tab、Tbc、Tcd、Tda为步进电机中AB、BC、CD、DA两相同时通电产生的合成磁场矢量。当给步进电机的A、B、C、D四相轮流通电时,步进电机的内部磁场从TA→TB→TC→TD,即磁场产生了旋转。步进电机的步距角θB计数公式[3]可表

4、示为:θB=θM/Nr;式中Nr:为步进电机的转子齿数;θM:为步进电机运行时两相邻稳定磁场之间的夹角。而图1为四相步进电机八细分电流波形图,从图中可知各相电流是以1/4的步距上升或下降的,在两相Ta,Tb中间又插入了七个稳定的中间状态,原来一步所转过的角度θM将由八步完成,实现了步距角的八细分。2.基于FPGA的硬件实现随着大规模集成电路FPGA/CPLD的发展,为步进电机的细分驱动带来了便利。采用EDA技术进行控制设计,可根据细分要求的步距角计算出各项绕组中通过的电流,存储在FPGA的嵌入式ROM中。细分控制时,地址计数器自动产生地址送到LPM-ROM,根据不同的地址,LPM-RO

5、M给出相应的数据到数字比较器,与线性锯齿波比较后输出PWM波形,控制功放电路给各相绕组通以相应的电流,实现步进电机的细分驱动[4]。3.步距细分的系统构成从图1四相步进电机八细分电流波形中可以看出,一般情况下总有二相绕组同时通电。一相电流逐渐增大,另一相逐渐减小。对应于一个步距角,电流可以变化N个台阶,也就是电机位置可以细分为N个小角度,这就是电机的一个步距角被N细分的工作原理。或者说,步距角的细分就是电机绕组电流的细分,从而可驱动步进电机平滑运行。图3步进电机细分驱动电路结构图该系统是由PWM计数器、波形ROM地址计数器、PWM波形ROM存储器、比较器、功放电路等组成,如(图3步进电

6、机细分驱动电路结构)所示。其中,PWM计数器在脉宽时钟作用下递增计数,产生阶梯形上升的周期性的锯齿波,同时加载到各数字比较器的一端;PWM波形ROM输出的数据A[3..0]、B[3..0]、C[3..0]、D[3..0]分别加载到各数字比较器的另一端。当PWM计数器的计数值小于波形ROM输出数值时,比较器输出低电平;当PWM计数器的计数值大于波形ROM输出数值时,比较器输出高电平。由此可输出周期性的PWM波形。根据图1步进电机8细分电流波形的要求,将各个时刻细分电流波形所对应的数值存放于波形ROM中,波形ROM的地址由地址计数器产生。通过对地址计数器进行控制,可以改变步进电机的旋转方向

7、、转动速度、工作/停止状态。FPGA产生的PWM信号控制各功率管驱动电路的导通和关断,其中PWM信号随ROM数据而变化,改变输出信号的占空比,达到限流及细分控制,最终使电机绕组呈现阶梯形变化,从而实现步距细分的目的。输出细分电流信号采用FPGA中LPM_ROM查表法,它是通过在不同地址单元内写入不同的PWM数据,用地址选择来实现不同通电方式下的可变步距细分。3.1电路原理图设计根据图3设计该系统的原理图,通过FPGA技术设计顶层电路。如图3.1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。