欢迎来到天天文库
浏览记录
ID:29708703
大小:338.50 KB
页数:8页
时间:2018-12-22
《北京四中2014届中考数学专练总复习《平行线与相交线》全章复习与巩固(提高)知识讲解》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《平行线与相交线》全章复习与巩固(提高)知识讲解【学习目标】熟练掌握对顶角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2.区别平行线的判定与性质,并能灵活运用;3.了解命题的概念及构成,并能通过证明或举反例判定命题的真假;4.了解平移的概念及性质.【高清课堂:相交线与平行线单元复习403105知识结构】【知识网络】【要点梳理】知识点一、相交线1.对顶角、邻补角两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角12∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等
2、即∠1=∠2邻补角有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线.邻补角互补即∠3+∠4=180°要点诠释:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线.⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角.⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶
3、角只有一个.2.垂线及性质、距离(1)垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图1所示,符号语言记作:AB⊥CD,垂足为O.要点诠释:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.(2)垂线的性质:垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记).垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.(3)点到直线的距离:直线外一
4、点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P到直线AB的距离是垂线段PO的长.要点诠释:垂线段PO是点P到直线AB所有线段中最短的一条.知识点二、平行线1.平行线判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同
5、一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)直线AB∥CD,
6、在直线AB上任取一点G,过点G作CD的垂线段GH,则垂线段GH的长度就是直线AB与CD间的距离.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度,平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.知识点三、命题及平移1.命题:判断一件事情的语句,叫做命题.每个命题都是题设
7、、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.2.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:平移的性质:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、相交线1.(1)如图(1)已知直线AB,CD相交于点0.(2)如图(2)已知直线AE,BD相交于点C.分别指出两图中哪些角是邻补角?哪些角是对顶角?【答案与解析】解:(1)邻补角是∠DOA与∠AOC,∠AOE与∠EOB
8、,∠BOC与∠COA,∠COE与∠DOE,∠DOA与∠DOB,∠DOB与∠BOC;对顶角是∠AOD与∠COB
此文档下载收益归作者所有