欢迎来到天天文库
浏览记录
ID:29676887
大小:110.00 KB
页数:3页
时间:2018-12-22
《九年级数学下册 1.5 二次函数的应用(第2课时)教案 (新版)湘教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时二次函数的应用【知识与技能】1.经历探索实际问题中两个变量的过程,使学生理解用抛物线知识解决最值问题的思路.2.初步学会运用抛物线知识分析和解决实际问题.【过程与方法】经历优化问题的探究过程,认识数学与人类生活的密切联系及对人类历史发展的作用,发展我们运用数学知识解决实际问题的能力.【情感态度】体会数学与人类社会的密切联系,了解数学的价值,增加对数学的理解和学好数学的信心.【教学重点】能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值.【教学难点】二次函数最值在实际中生活中的应用,激发学生的学习兴趣.一、情境导入,初
2、步认识问题1同学们完成下列问题:已知y=x2-2x-3①x=时,y有最值,其值为;②当-1≤x≤4时,y最小值为,y最大值为.答案:①1,小,-4;②-4,5【教学说明】解决上述问题既是对前面所学知识的巩固,又是本节课解决优化最值问题的理论依据.二、思考探究,获取新知教学点1最大面积问题阅读教材P30动脑筋,回答下列问题.1.若设窗框的宽为xm,则窗框的高为m,x的取值范围是.2.窗框的透光面积S与x之间的关系式是什么?3.如何由关系式求出最大面积?答案:1.03、过E点剪下两个正方形,它们的边长分别是AE,DE,要使剪下的两个正方形的面积和最小,点E应选在何处?为什么?解:设矩形纸较短边长为a,设DE=x,则AE=a-x,那么两个正方形的面积和:y=x2+(a-x)2=2x2-2ax+a2当x=-时,y最小值=2×(a)2-2a×a+a2=a2即点E选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.【教学说明】此题要充分利用几何关系建立二次函数模型,再利用二次函数性质求解.教学点2最大利润问题例2讲解教材P31例题【教学说明】通过例题讲解使学生初步认识到解决实际问题中的最值,首先要找出最值问题的二次函数关系式,利4、用二次函数的性质为理论依据来解决问题.例3某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?【分析】找出进价,售价,销售,总利润之间的关系,建立二次函数,再求最大值.列表分析如下:关系式:每件利润=售价-进价,总利润=每件利润×销量.解:设降价x元,总利润为y元,由题意得y=(10-x-8)(100+100x)=-100x2+100x+200=-100(x-0.5)2+225.当5、x=0.5时,总利润最大为225元.∴当商品的售价降低0.5元时,销售利润最大.三、运用新知,深化理解1.如图,点C是线段AB上的一个支点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三点分点时,S最小D.当C是AB的三等分点时,S最大第1题图第2题图2.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4cm,当水渠深x为时,横断面面积最大,最大面积是.3.某经销店为某工厂代销一种建筑材料,当每吨售价为260元时,月销售6、量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).①当每吨售价是240元时,计算此时的月销售量;②求出y与x的函数关系式(不要求写出x的取值范围);③该经销店要获得最大月利润,售价应定为每吨多少元?④小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【答案】1.A2.cm,cm23.解:①45+×7.5=60(吨).②y=(x-100)(45+7、×7.5).化简,得y=-x2+315x-24000.③y=-x2+315x-24000=-(x-210)2+9075.此经销店要获得最大月利润,材料的售价应定为每吨210元.④我认为,小静说得不对.理由:当月利润最大时,x为210元,每月销售额W=x(45+×7.5=-(x-160)2+19200.当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大的.∴小静说得不对.【教学说明】1.先列出函数的解析式,再根据其增减性确定最值.2.要分清利润,销售量与售价的关系;分清最大利润与最大销售额之间的区别.四、师生互动,课堂小结1.这节课你学到了8、什么?还有哪些疑惑?2.在学生回答的基
3、过E点剪下两个正方形,它们的边长分别是AE,DE,要使剪下的两个正方形的面积和最小,点E应选在何处?为什么?解:设矩形纸较短边长为a,设DE=x,则AE=a-x,那么两个正方形的面积和:y=x2+(a-x)2=2x2-2ax+a2当x=-时,y最小值=2×(a)2-2a×a+a2=a2即点E选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.【教学说明】此题要充分利用几何关系建立二次函数模型,再利用二次函数性质求解.教学点2最大利润问题例2讲解教材P31例题【教学说明】通过例题讲解使学生初步认识到解决实际问题中的最值,首先要找出最值问题的二次函数关系式,利
4、用二次函数的性质为理论依据来解决问题.例3某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?【分析】找出进价,售价,销售,总利润之间的关系,建立二次函数,再求最大值.列表分析如下:关系式:每件利润=售价-进价,总利润=每件利润×销量.解:设降价x元,总利润为y元,由题意得y=(10-x-8)(100+100x)=-100x2+100x+200=-100(x-0.5)2+225.当
5、x=0.5时,总利润最大为225元.∴当商品的售价降低0.5元时,销售利润最大.三、运用新知,深化理解1.如图,点C是线段AB上的一个支点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三点分点时,S最小D.当C是AB的三等分点时,S最大第1题图第2题图2.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4cm,当水渠深x为时,横断面面积最大,最大面积是.3.某经销店为某工厂代销一种建筑材料,当每吨售价为260元时,月销售
6、量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).①当每吨售价是240元时,计算此时的月销售量;②求出y与x的函数关系式(不要求写出x的取值范围);③该经销店要获得最大月利润,售价应定为每吨多少元?④小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【答案】1.A2.cm,cm23.解:①45+×7.5=60(吨).②y=(x-100)(45+
7、×7.5).化简,得y=-x2+315x-24000.③y=-x2+315x-24000=-(x-210)2+9075.此经销店要获得最大月利润,材料的售价应定为每吨210元.④我认为,小静说得不对.理由:当月利润最大时,x为210元,每月销售额W=x(45+×7.5=-(x-160)2+19200.当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大的.∴小静说得不对.【教学说明】1.先列出函数的解析式,再根据其增减性确定最值.2.要分清利润,销售量与售价的关系;分清最大利润与最大销售额之间的区别.四、师生互动,课堂小结1.这节课你学到了
8、什么?还有哪些疑惑?2.在学生回答的基
此文档下载收益归作者所有