高中数学 3.1.1. 随机事件的概率教学案 必修3

高中数学 3.1.1. 随机事件的概率教学案 必修3

ID:29650173

大小:159.06 KB

页数:8页

时间:2018-12-21

高中数学 3.1.1. 随机事件的概率教学案 必修3_第1页
高中数学 3.1.1. 随机事件的概率教学案 必修3_第2页
高中数学 3.1.1. 随机事件的概率教学案 必修3_第3页
高中数学 3.1.1. 随机事件的概率教学案 必修3_第4页
高中数学 3.1.1. 随机事件的概率教学案 必修3_第5页
资源描述:

《高中数学 3.1.1. 随机事件的概率教学案 必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、随机事件的概率一、教材分析在现实世界中,随机现象是广泛存在的,而随机现象中存在着数量规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.二、教学目标1.(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系

2、2.发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。3.(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.三、教学重点难点重点:事件的分类;概率的定义以及和频率的区别与联系;难点:随机事件发生存在的统计规律性.四、学情分析求随机事件的概率主要要用到排列、组合知识,学生没有基础,但学生在初中已经接触个类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对“随机事件的概率”这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念

3、。五、教学方法1.引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性2.学案导学:见后面的学案。3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备多媒体课件,硬币数枚七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。(二)情景导入、展示目标日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?明天上

4、午第一节课一定是八点钟上课吗?等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校?明天中午12:10有多少人在学校食堂用餐?你购买的本期福利彩票是否能中奖?等等,这些问题的结果都具有偶然性和不确定性设计意图:步步导入,吸引学生的注意力,明确学习目标。(三)合作探究、精讲点拨1、必然事件、不可能事件和随机事件思考1:考察下列事件:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)在标准大气压下水温升高到100°C会沸腾.这些事件就其发生与否有什么共同特点?思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗?在条件S下,

5、一定会发生的事件,叫做相对于条件S的必然事件.让学生列举一些必然事件的实例思考3:考察下列事件:(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;(3)服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点?思考4:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗?在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件让学生列举一些不可能事件的实例思考5:考察下列事件:(1)某人射击一次命中目标;(2)马林能夺取北京奥运会男子乒乓球单打冠军;(3)抛掷一个骰字出现的点数为偶数.这些事件就其发生与否有什么共同特点?思考6:我们把上述事件叫做随机事件,

6、你指出随机事件的一般含义吗?在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.让学生列举一些随机事件的实例思考7:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A在这个条件下是确定事件,在另一条件下是随机事件?你能举例说明吗?2、事件A发生的频率与概率物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映.思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为事件A出现的频数,

7、那么事件A出现的频率fn(A)等于什么?频率的取值范围是什么?  思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:抛掷次数正面向上次数频率0.520204810610.518140404020480.50691200060190.501624000120120.500530000149840.499672088361240.5011在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少?思考3:上述试验表明,随机事件A在每次试验中是否发生是不能预知的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。