高中数学 2.4 正态分布教案 选修2-3

高中数学 2.4 正态分布教案 选修2-3

ID:29647901

大小:482.56 KB

页数:7页

时间:2018-12-21

高中数学 2.4 正态分布教案 选修2-3_第1页
高中数学 2.4 正态分布教案 选修2-3_第2页
高中数学 2.4 正态分布教案 选修2-3_第3页
高中数学 2.4 正态分布教案 选修2-3_第4页
高中数学 2.4 正态分布教案 选修2-3_第5页
资源描述:

《高中数学 2.4 正态分布教案 选修2-3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、河北省张家口一中高二数学选修2-32.4正态分布教案教学目标:知识与技能:掌握正态分布在实际生活中的意义和作用。过程与方法:结合正态曲线,加深对正态密度函数的理理。情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质。教学重点:正态分布曲线的性质、标准正态曲线N(0,1)。教学难点:通过正态分布的图形特征,归纳正态曲线的性质。复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总

2、体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积.即总体密度曲线在区间(a,b)上得定积分。观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:式中的实数、是参数,分别表示总体的平均数与标准差,的图象为正态分布密度曲线,简称正态曲线.讲解新课:1.一般地,如果对于任何实数,随机变量X满足,则称X的分布为正态分布(normaldistribution

3、).正态分布完全由参数和确定,因此正态分布常记作.如果随机变量X服从正态分布,则记为X~.说明:1参数是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在1733年,法国数学家棣莫弗就用n!的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布)是由均值μ和标准差σ唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正

4、态曲线具有的基本特征是两头底、中间高、左右对称正态曲线的作图,书中没有做要求,教师也不必补上讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x轴的上方,与x轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x<μ时,曲线上升(增函数);当x>μ时,曲线下降(减函数)并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散

5、;σ越小.曲线越“瘦高”.总体分布越集中:5.标准正态曲线:当μ=0、σ=l时,正态总体称为标准正态总体,其相应的函数表示式是,其相应的曲线称为标准正态曲线标准正态总体N(0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题1.标准正态总体的概率问题:对于标准正态总体N(0,1),是总体取值小于的概率,即,其中,图中阴影部分的面积表示为概率只要有标准正态分布表即可查表解决.从图中不难发现:当时,;而当时,Φ(0)=0.52.标准正态分布表标准正态总体在正态总体的研究中有非常重要的地位,为此专

6、门制作了“标准正态分布表”.在这个表中,对应于的值是指总体取值小于的概率,即,.若,则.利用标准正态分布表,可以求出标准正态总体在任意区间内取值的概率,即直线,与正态曲线、x轴所围成的曲边梯形的面积.3.非标准正态总体在某区间内取值的概率:可以通过转化成标准正态总体,然后查标准正态分布表即可在这里重点掌握如何转化首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能

7、在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a值是否落入(μ-3σ,μ+3σ);三是作出判断对于正态总体取值的概率:在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7%因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分在实际应用中,通常认为服从于正态分布的随机变量只取之间的值,并简称之为3原则。讲解范例:例1.给出下列三个

8、正态总体的函数表达式,请找出其均值μ和标准差σ(1)(2)(3)答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式有==0.9772+0.8413-1=0.8151.例3.若

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。