欢迎来到天天文库
浏览记录
ID:29644443
大小:185.00 KB
页数:4页
时间:2018-12-21
《(秋)九年级数学上册 第二章 一元二次方程教案 (新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一元二次方程【知识与技能】1.一元二次方程的相关概念;2.灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程;3.能运用一元二次方程的根的判别式判定方程的根的情况;4.能简单运用一元二次方程的根与系数的关系解决相关问题;5.构造一元二次方程解决简单的实际问题;【过程与方法】通过灵活运用解方程的方法,体会几种解法之间的联系与区别,进一步熟练地根据方程特征找出最优解法.【情感态度】通过实际问题的解决,进一步熟练地运用方程解决实际问题,体会方程思想在解决问题中的作用.【教学重点】运用知识、技能解决问题.【教学难点】解题分析能力的提高.一、知识结构【教学说明】引导学生回顾本章知识点,展
2、示本章知识结构图,使学生系统地了解本章知识以及之间的关系二、释疑解惑,加深理解1.一元二次方程的概念:等号两边都是整式,只含有一个求知数(一元),并且求知数的最高次数是2(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式是:ax2+bx+c=0(a、b、c为常数,a≠0),其中ax2是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项.3.一元二次方程的解法:①直接开方法;②配方法;③公式法;④因式分解法.4.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是Δ=b2-4ac,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时
3、,方程没有实数根;当Δ≥0时,方程有实数根.5.一元二次方程的根与系数的关系:(韦达定理)当Δ=b2-4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式为x=;若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=,x1·x2=.若一元二次方程x2+px+q=0的两根为x1、x2,则x1+x2=-p,x1x2=q.6.一元二次方程的应用.【教学说明】学生独立完成,通过对重点知识的回顾为本节课的学习内容做好铺垫.三、典例精析,复习新知1.(1)方程(m+1)xm2-2m-1+7x-m=0是一元二次方程,则m是多少?分析:首先根据一元二次方程的定义得,m
4、2-2m-1=2;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m+1≠0来求m的值.解:m=3.(2)若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m等于()A.1B.2C.1或2D.0解析:首先得出m2-3m+2=0;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m-1≠0来求m的值.解答:B【教学说明】此时要注意二次项系数不为0,在讨论含字母系数的一元二次方程问题时,命题者常利用a≠0设计陷阱.2.用适当的方法解一元二次方程:(1)x2=3x;(2)(x-1)2=3;(3)x2-2x-99=0;(4)2x
5、2+5x-3=0.分析:方程(1)选用因式分解法;方程(2)选用直接开平方法;方程(3)选用配方法;方程(4)选用公式法.3.若(x2+y2)2-4(x2+y2)-5=0,则x2+y2=______.解析:用换元法设x2+y2=m得m2-4m-5=0,解得m1=5,m2=-1.对所求结果,还要结合“x2+y2”进行取舍,从而得到最后结果.解答:5【教学说明】一元二次方程的解法要根据方程的特点,灵活选用具体方法.对于特殊的方程要通过适当的变换,使之转化为常规的一元二次方程,如用换元法.4.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k>
6、-1且k≠0C.k<0D.k<0且≠0解析:b2-4ac=(-2)2-4×(-1)k=4k+4>0得k>-1,再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得k≠0.解答:B【教学说明】一元二次方程的判别式可以用来:(1)不解方程,判断根的情况;(2)利用方程有无实数根,确定取值范围,解题时,务必分清“有实数根”、“有两个实数根”、“有两个相等的实数根”、“有两个不相等的实数根”等关键性字眼.5.某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那
7、么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?分析:如果这种台灯售价上涨x元,那么每个月台灯获利(40+x-30)元,每月平均销售数量为(600-10x)个,销售利润为(40+x-30)和(600-10x)的积.用一元二次方程解决实际问题时,所求得的结果往往有两个,而实际问题的答案常常是一个,这就需要我们仔细审题,看清题目的要求,进而作出正确的选择.解:设这种台灯的售价上涨x元,根据题意,得(40+x-3
此文档下载收益归作者所有