高三数学总复习 7.5 综合问题选讲教学案 新人教版必修1

高三数学总复习 7.5 综合问题选讲教学案 新人教版必修1

ID:29636250

大小:500.56 KB

页数:7页

时间:2018-12-21

高三数学总复习 7.5 综合问题选讲教学案 新人教版必修1_第1页
高三数学总复习 7.5 综合问题选讲教学案 新人教版必修1_第2页
高三数学总复习 7.5 综合问题选讲教学案 新人教版必修1_第3页
高三数学总复习 7.5 综合问题选讲教学案 新人教版必修1_第4页
高三数学总复习 7.5 综合问题选讲教学案 新人教版必修1_第5页
资源描述:

《高三数学总复习 7.5 综合问题选讲教学案 新人教版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§7.5综合问题选讲一、知识导学 (一)直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.3.了解二元一次不等式表示平面区域.4.了解线性规划的意义,并会简单的应用.5.了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.(二)圆锥曲线方程1.掌握椭圆的定

2、义、标准方程和椭圆的简单几何性质.2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.4.了解圆锥曲线的初步应用.(三)目标1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知

3、道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方

4、程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握、b、、、之间的关系及相应的几何意义;利用

5、椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二、疑难知识导析 1.⑴直线的斜率是一个非常重要的概念,斜率反映了直线相对于轴的倾斜程度.当斜率存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为=(∈R).因此,利用直线的点斜式或斜截式方程解题时,斜率存在与否,要分别考虑.⑵直线的截距式是两点式的特例,、b分别是直线在轴、轴上的截距,因为≠0,b≠0,所

6、以当直线平行于轴、平行于轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解.⑶求解直线方程的最后结果,如无特别强调,都应写成一般式.⑷当直线或的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直⑸在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算.2.⑴用待定系数法求椭圆的标准方程时,要分清焦点在轴上还是轴上,还是两种都存在.⑵注意椭圆定义、性质的运用,熟练地进行、b、、间的互求,并能根据所给的方程画出椭圆.⑶求双曲线的标准方程应注意两个问题:

7、⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.⑷双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中是一个不为零的常数.⑸双曲线的标准方程有两个和(>0,b>0).这里,其中

8、

9、=2c.要注意这里的、b、c及它们之间的关系与椭圆中的异同.⑹求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再由条件确定参数的值.同时,应明确抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其

10、中抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中一个,就可以求出其他两个.三、经典例题导讲[例1]已知点T是半圆O的直径AB上一点,AB=2、OT=(0<<1),以AB为直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圆于P、Q两点,建立如图所示的直角坐标系.(1)写出直线的方程;(2)计算出点P、Q的坐标;(3)证明:由点P发出的光线,经AB反射后,反射光线通过点Q.解:(1)显然,于是直线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。