欢迎来到天天文库
浏览记录
ID:29636216
大小:343.06 KB
页数:4页
时间:2018-12-21
《高中数学 空间向量的正交分解及其坐标表示导学案 新人教a版选修2-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、陕西省榆林市育才中学高中数学空间向量的正交分解及其坐标表示导学案新人教A版选修2-1学习目标1.掌握空间向量的正交分解及空间向量基本定理和坐标表示;2.掌握空间向量的坐标运算的规律;学习过程一、课前准备复习1:平面向量基本定理:对平面上的任意一个向量,是平面上两个向量,总是存在实数对,使得向量可以用来表示,表达式为,其中叫做.若,则称向量正交分解.复习2:平面向量的坐标表示:平面直角坐标系中,分别取x轴和y轴上的向量作为基底,对平面上任意向量,有且只有一对实数x,y,使得,,则称有序对为向量的,即=.二、新课导学※学习探究探究任务一:空间向量的正交分解问
2、题:对空间的任意向量,能否用空间的几个向量唯一表示?如果能,那需要几个向量?这几个向量有何位置关系?新知:⑴空间向量的正交分解:空间的任意向量,均可分解为不共面的三个向量、、,使.如果两两,这种分解就是空间向量的正交分解.(2)空间向量基本定理:如果三个向量,对空间任一向量,存在有序实数组,使得.把的一个基底,都叫做基向量.反思:空间任意一个向量的基底有个.⑶单位正交分解:如果空间一个基底的三个基向量互相,长度都为,则这个基底叫做单位正交基底,通常用{i,j,k}表示.⑷空间向量的坐标表示:给定一个空间直角坐标系O-xyz和向量a,且设i、j、k为x轴、
3、y轴、z轴正方向的单位向量,则存在有序实数组,使得,则称有序实数组为向量a的坐标,记着.⑸设A,B,则=.⑹向量的直角坐标运算:设a=,b=,则⑴a+b=;⑵a-b=;⑶λa=;⑷a·b=.试试:1.设,则向量的坐标为.2.若A,B,则=.3.已知a=,b=,求a+b,a-b,8a,a·b※典型例题例1已知向量是空间的一个基底,从向量中选哪一个向量,一定可以与向量构成空间的另一个基底?变式:已知O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C是否共面?小结:判定空间三个向量是否构成空间的一个基底的方法是:这三个向量一定不共面.例
4、2如图,M,N分别是四面体QABC的边OA,BC的中点,P,Q是MN的三等分点,用表示和.变式:已知平行六面体,点G是侧面的中心,且,,试用向量表示下列向量:⑴⑵.※动手试试练1.已知,求:⑴;⑵.练2.正方体的棱长为2,以A为坐标原点,以为x轴、y轴、z轴正方向建立空间直角坐标系,则点,的坐标分别是,,.三、总结提升※学习小结1.空间向量的正交分解及空间向量基本定理;2.空间向量坐标表示及其运算※知识拓展建立空间直角坐标系前,一定要验证三条轴的垂直关系,若图中没有建系的环境,则根据已知条件,通过作辅助线来创造建系的图形.※当堂检测(时量:5分钟满分:1
5、0分)计分:1.若为空间向量的一组基底,则下列各项中,能构成基底的是()A.B.C.D.2.设i、j、k为空间直角坐标系O-xyz中x轴、y轴、z轴正方向的单位向量,且,则点B的坐标是3.在三棱锥OABC中,G是的重心(三条中线的交点),选取为基底,试用基底表示=4.正方体的棱长为2,以A为坐标原点,以为x轴、y轴、z轴正方向建立空间直角坐标系,E为BB1中点,则E的坐标是.5.已知关于x的方程有两个实根,,且,当t=时,的模取得最大值.课后作业1.已知,求线段AB的中点坐标及线段AB的长度.2.已知是空间的一个正交基底,向量是另一组基底,若在的坐标是,
6、求在的坐标.
此文档下载收益归作者所有