备战2019年高考数学大一轮复习 热点聚焦与扩展 专题08 函数与方程——零点问题面面观

备战2019年高考数学大一轮复习 热点聚焦与扩展 专题08 函数与方程——零点问题面面观

ID:29633149

大小:1.09 MB

页数:22页

时间:2018-12-21

备战2019年高考数学大一轮复习 热点聚焦与扩展 专题08 函数与方程——零点问题面面观_第1页
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题08 函数与方程——零点问题面面观_第2页
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题08 函数与方程——零点问题面面观_第3页
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题08 函数与方程——零点问题面面观_第4页
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题08 函数与方程——零点问题面面观_第5页
资源描述:

《备战2019年高考数学大一轮复习 热点聚焦与扩展 专题08 函数与方程——零点问题面面观》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题08函数与方程----零点问题面面观【热点聚焦与扩展】函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根分布问题;(3)判断根的个数问题;(4)根据方程解的情况确定求参数的值或范围.上述情形除(1)简单,其它往往与分段函数结合或与导数的应用结合,难度往往较大.一、基础知识:1、零点的定义:一般地,对于函数,我们把方程的实数根称为函数的零

2、点2、函数零点存在性定理:设函数在闭区间上连续,且,那么在开区间内至少有函数的一个零点,即至少有一点,使得.(1)在上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设连续)①若,则的零点不一定只有一个,可以有多个②若,那么在不一定有零点③若在有零点,则不一定必须异号3、若在上是单调函数且连续,则在的零点唯一.4、函数的零点,方程的根,两图象交点之间的联系(1)函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点.(2)方程:

3、方程的特点在于能够进行灵活的变形,从而可将等号两边的表达式分别构造为两个可分析的函数,为作图做好铺垫.(3)图象的交点:通过作图可直观的观察到交点的个数,并能初步判断交点所在区间.三者转化:函数的零点方程的根方程的根函数与的交点.二、零点存在与判断方法、技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。例如:对于方程,无法直接求出根,构造函数,由即可判定其零点必在中2、函数的零点,方程的根,两函数的交点在零

4、点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。缺点:方法单一,只能判定零点存在而无法判断个数,且能否得到结论与代入的特殊值有关(2)方程的根:工具:方程的等价变形作用:当所给函数不易于分析性质和图象时,可将函数转化为方程,从而利用等式的性质可对方程进行变形,构造出便于分析的函数缺点:能够直接求解的方程种类较少,很多转化后的方程无法用传统方法求出根,也无法判断根的个数(3)两函数的交点:工具:数形结合作用:前两个主要是代数运算与变形,而将方

5、程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现。通过图象可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围。缺点:数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含的函数可作出图象,那么因为另外一个只含参数的图象为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡.(作3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个.因此分析一

6、个函数零点的个数前,可尝试判断函数是否单调.4、几个“不一定”与“一定”(假设在区间连续)(1)若,则“一定”存在零点,但“不一定”只有一个零点.要分析的性质与图象,如果单调,则“一定”只有一个零点(2)若,则“不一定”存在零点,也“不一定”没有零点。如果单调,那么“一定”没有零点(3)如果在区间中存在零点,则的符号是“不确定”的,受函数性质与图象影响。如果单调,则一定小于05、零点与单调性配合可确定函数的符号:是一个在单增连续函数,是的零点,且,则时,;时,.三、函数零点的性质及应用1、此类问题的处理

7、步骤:(1)作图:可将零点问题转化成方程,进而通过构造函数将方程转化为两个图象交点问题,并作出函数图象(2)确定变量范围:通过图象与交点位置确定参数和零点的取值范围(3)观察交点的特点(比如对称性等)并选择合适的方法处理表达式的值,2.常见处理方法:(1)代换法:将相等的函数值设为,从而用可表示出,将关于的表达式转化为关于的一元表达式,进而可求出范围或最值(2)利用对称性解决对称点求和:如果关于轴对称,则;同理,若关于中心对称,则也有。将对称的点归为一组,在求和时可与对称轴(或对称中心)找到联系【经典例

8、题】例1【2018届北京市十一学校高三3月零模】已知函数那么在下列区间中含有函数零点的是()A.B.C.D.【答案】B【解析】,所以函数f(x)在区间必有零点,选B.例2.设函数,若实数分别是的零点,则()A.B.C.D.【答案】A【名师点睛】利用零点存在性定理求解三步曲是:①先移项使方程右边为零,再令方程左边为函数;②求区间两端点的函数值;③若函数在该区间上连续且,则方程在该区间内必有根.例3【2018届福建省永春一中、培元、季延、石光中

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。