欢迎来到天天文库
浏览记录
ID:29632669
大小:473.56 KB
页数:2页
时间:2018-12-21
《高三数学 第7课时 函数的概念复习学案 苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、江苏省邳州市第二中学高三数学复习:第7课时函数的概念学案苏教版一.课题:二.教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三.教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂.四.教学过程:(一)主要知识:1.对应、映射、像和原像、一一映射的定义;2.函数的传统定义和近代定义;3.函数的三要素及表示法.(二)主要方法:1.对映射有两个关键点:一是有象,二是象惟一,缺一不可;2.对函数三要素及其之间的关系给以深刻理解,这是处理函数问题
2、的关键;3.理解函数和映射的关系,函数式和方程式的关系.(三)例题分析:例1.(1),,;(2),,;(3),,.上述三个对应(2)是到的映射.例2.已知集合,映射,在作用下点的象是,则集合()解法要点:因为,所以.例3.设集合,,如果从到的映射满足条件:对中的每个元素与它在中的象的和都为奇数,则映射的个数是()8个12个16个18个解法要点:∵为奇数,∴当为奇数、时,它们在中的象只能为偶数、或,由分步计数原理和对应方法有种;而当时,它在中的象为奇数或,共有种对应方法.故映射的个数是.例4.矩形的长,宽,动点、分别在、上,且,(1)将的面积表示为的函数,求函
3、数的解析式;(2)求的最大值.解:(1).∵,∴,∴函数的解析式:;(2)∵在上单调递增,∴,即的最大值为.例5.函数对一切实数,均有成立,且,(1)求的值;(2)对任意的,,都有成立时,求的取值范围.解:(1)由已知等式,令,得,又∵,∴.(2)由,令得,由(1)知,∴.∵,∴在上单调递增,∴.要使任意,都有成立,当时,,显然不成立.当时,,∴,解得∴的取值范围是.(四)巩固练习:1.给定映射,点的原象是或.2.下列函数中,与函数相同的函数是()3.设函数,则=.五.课后作业:《高考计划》考点7,智能训练5,7,9,10,13,14.
此文档下载收益归作者所有