欢迎来到天天文库
浏览记录
ID:29623114
大小:330.56 KB
页数:3页
时间:2018-12-21
《高中数学 1.2.2组合(3)教案 新人教a版选修2-3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、福建省漳州市芗城中学高中数学1.2.2组合(3)教案新人教A版选修2-3课题:第课时总序第个教案课型:新授课编写时时间:年月日执行时间:年月日教学目标:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。过程与方法:了解组合数的意义,理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算。情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。教学重点:组合的概念和组合数公式教学难点:组合的概念和组合数公式教学用具多媒体、实物投影仪:教学方法:能运用组合要领分析简单的实际问题
2、,提高分析问题的能力。教学过程:组合数的性质1:.一般地,从n个不同元素中取出个元素后,剩下个元素.因为从n个不同元素中取出m个元素的每一个组合,与剩下的n-m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n-m个元素的组合数,即:.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想证明:∵又,∴说明:①规定:;②等式特点:等式两边下标同,上标之和等于下标;③此性质作用:当时,计算可变为计算,能够使运算简化.例如===2002;④或.2.组合数的性质2:=+.一般地,从这n+1个不同元素中取出m个元素的组合数是,这些组合可以分为
3、两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m-1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.证明:∴=+.说明:①公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;②此性质的作用:恒等变形,简化运算例11.一个口袋内装有大小不同的7个白球和1个黑球,(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取
4、出3个球,使其中不含黑球,有多少种取法?解:(1),或,;(2);(3).例12.(1)计算:;(2)求证:=++.解:(1)原式;证明:(2)右边左边例13.解方程:(1);(2)解方程:.解:(1)由原方程得或,∴或,又由得且,∴原方程的解为或上述求解过程中的不等式组可以不解,直接把和代入检验,这样运算量小得多.(2)原方程可化为,即,∴,∴,∴,解得或,经检验:是原方程的解教学后记:
此文档下载收益归作者所有