欢迎来到天天文库
浏览记录
ID:29444043
大小:146.04 KB
页数:9页
时间:2018-12-19
《【考研大纲】2013考研数学二大纲变化对比表》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、http://kaoyan.yjbys.com/2013考研数学二大纲变化对比表高等数学部分章节2012大纲2013大纲变化情况及复习指南一、一、函数、极限、连续考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。考试要
2、求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。2.了解函数的有界性、单调性、周期性和奇偶性。3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。4.掌握基本初等函数的性质及其图形,了解初等函数的概念。5.考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:函数连续的
3、概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。考试要求1理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。2了解函数的有界性、单调性、周期性和奇偶性。3理解复合函数及分段函数的概念,了解反函数及隐函数的概念。4掌握基本初等函数的性质及其图形,了解初等函数的概念。5无变化重点复习:极限的定义及性质、极限存在的两个准则、两个重要极限、各种类型函数极限的求法、无穷小量、函数间断点、连续函数的性质等本章基础内容较多,复习要扎实、稳步进行,以保证后面各章节的顺利复习。9http://kaoyan.yjbys.com/理解极限的概念,理解函数左极限与右极限的概念以及函
4、数极限存在与左极限、右极限的关系。1.掌握极限的性质及四则运算法则。2.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。3.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。4.理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。6掌握极限的性质及四则运算法则。7掌握极限存在的两个准则,并会利用它们求极限,
5、掌握利用两个重要极限求极限的方法。8理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。9理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分学考试内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’
6、Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。2.考试内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微
7、分中值定理,洛必达(L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径考试要求1理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。2无变化重点复习:导数的定义、函数可导性与连续性的关系、各类函数
此文档下载收益归作者所有