欢迎来到天天文库
浏览记录
ID:29386043
大小:59.00 KB
页数:4页
时间:2018-12-19
《高二数学上 7.2 直线的方程(一)优秀教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、7.2直线的方程一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直
2、线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程问题1:已知直线L过点(1,2),斜率为,则直线L上任一点满足什么条件?你能得出直线L的方程吗?问题2:若直线L经过点P1(x1,y1),且斜率为k,则L的方程是什么?(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x
3、,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.当直线的斜
4、率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.练习1:课本第39~40页1,2(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直
5、线的斜率和在y轴上的截距.练习2:课本第40页3例1、求过点(2,-1)且倾斜角为直线x-3y+4=0的倾斜角的2倍的直线方程。例2、已知直线L在y轴上的截距是2,且其倾斜角的正弦值为,求直线L方程。例3、已知直线L的倾斜角α满足而且它在y轴上的截距为3,求直线L与两坐标轴所围成的三角形的面积。例4、已知直线L经过点P(3,2),并且与两坐标轴的正半轴分别交于A、B两点,若△AOB面积为16,求L的方程;变式题:求使△AOB面积最小时的直线L的方程。练习3:1、已知直线L:,求直线L的倾斜角的取值范围。2、若△ABC在第一象限,A(1,1)、B(5
6、,1),且点C在直线AB的上方,,求直线AC、直线BC的方程。五.小结:1)直线方程的两种形式:点斜式:y-y1=k(x-x1)斜截式:y=kx+b2)点斜式和斜截式都是在斜率存在时方可用。六.作业:P44习题7.21、2、4、5、6
此文档下载收益归作者所有