欢迎来到天天文库
浏览记录
ID:29372228
大小:227.50 KB
页数:14页
时间:2018-12-19
《高中数学第五届全国青年教师观摩与评比活动《直线的倾斜角和斜率》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、7.1直线的倾斜角和斜率(第一课时)教学设计教学内容分析本节课是《全日制普通高级中学教科书(必修)教学第二册(上)》(人教版)第七章第1节课《7.1直线的倾斜角和斜率》。根据实际情况,这是第一课时。本节教学是高中解析几何内容的开始。直线的倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何要素和代数表示,是平面直角坐标系内以解析法(坐标法)的方式来研究直线及其几何性质(如直线的位置关系、夹角、点到直线的距离等)的基础。通过本节内容的学习,帮助学生初步了解直角坐标系内几何要素代数化的过程和意义,初步渗透解析几何的基本思想和基
2、本研究方法,进一步培养学生对函数、数形结合、分类讨论思想的应用知识。本课有着开启全章,奠定基调,渗透方法的作用。用坐标法解决几何问题是解析几何的主要目标,其本质是抽象的代数语言和直观的集合语言之间的数学对话。教材解析对直线的方程和方程的直线的概念的理解需要一个过程。在本节教学中,将一次函数与其图象的对应关系,直接转换成直线方程与直线的对应关系,只需学生对其有一个初步的了解,为今后学习曲线和方程的概念作准备。直线的倾斜角和斜率都是反映直线相对于x轴正方向的倾斜程度的。倾斜角是直接用几何要素反映这种倾斜程度的。斜率等于倾斜角的正切值,是
3、用函数刻画直线倾斜程度的代数表示,定义本身从“数”和“形”两方面沟通了表示直线倾斜程度的内在联系,将直线的倾斜度和实数之间建立对应关系,使几何问题的研究具有了普遍性。由于在解析几何中,通过过两点的直线的斜率公式,把斜率坐标化,在研究直线时比使用倾斜角更方便。因此,它是研究直线问题的重要工具。正确理解斜率的概念,掌握过两点的直线的斜率公式,是学习直线方程,研究直线的位置关系等许多问题的关键。目标与目标解目标:了解直线的方程和方程的直线概念,理解直线的倾斜角和斜率概念,掌握过两点的直线的斜率公式。目标解析:通过斜率概念的构建和斜率公式的
4、探究,经厉几何问题代数化的过程,渗透数形结合、分类讨论的思想方法,强化函数的应用意识,训练学生的逆向思维能力。通过师生的双边活动使学生进一步获得分类讨论、抽象概括等研究数学的规律和方法,培养学生周密思考,主动学习、合作交流的意识和勇于探索的良好品质。析教学问题诊断分析1、两点确定一条直线,这是学生知道的,但就已知一点再需要增加什么量才能确定直线,以及如何来刻画这个量,对学生来说有点困难,所以在教学过程中,通过逐个给出的三个问题,让学生在讨论后形成倾斜角的概念。2、斜率概念的学习是本节的难点,学生认为倾斜角就可以刻画直线的方向,而且每
5、一条直线的而倾斜角是唯一的,而斜率却不这样,另外,为什么要用倾斜角的正切定义斜率对学生也有一定的困难,教学中从计算具体的直线的倾斜角入手,通过师生对话探究,从学习斜率的必要性、合理性、完备性三个角度进行突破。3、过两点的斜率概念的建立是本节又一难点,受思维定势影响,在坐标系中,学生应用几何法探究斜率公式是必然,应重视这一方法,除此之外,要积极引导学生应用向量法,把几何要素用点的坐标来刻画描述,使几何问题代数化。教法特点及预期效果分析1、教学上应用新课标理念,以启发式为主。亚里士多德讲:“思维从问题,惊讶从开始”。通过问题驱动法,采用
6、师生对话的方式,能使学生在讨论探究中激发学习新知识的兴趣和欲望,也可加深对得到概念的理解。2、本节课采用学导式,改变了以往研究斜率的方法,让学生从数、形两个不同的角度对斜率公式进行一个全方位的研究,不仅仅是通过对比总结得到斜率的计算公式,更重要的预期是向学生渗透坐标法,体会向量法的优越性,教师可以真正做到“授之以渔”。3、应用多媒体教具的电教手段弥补在直观感、立体感和动态感方面的不足,增大了教学内容,增强了学生的思维训练密度。4、通过合作学习,上台展示,让学生在活动中感受教学思想方法之和谐优美。重点难点教学重点:直线的倾斜角和斜率概
7、念,过两点的直线的斜率公式。教学难点:斜率概念的学习和过两点的直线的斜率公式的建立。教学程序教学情境学情预设设计意图情境创设引出课题约3分钟师:在初中不与坐标轴平行的直线可以用一次函数来表示,开口向上或向下的抛物线可以用二次函数来表示,这样就把对图形的研究转化为对函数的研究,这里沟通数形关系的桥梁是坐标系。这种以坐标系为桥梁,把几何问题转化为代数问题,通过代数运算研究几何图形性质的方法,叫坐标法。用坐标法研究几何的学科称为解析几何。帮助学生回忆初中平面几何中的相关概念。可指出前面研究问题的方法称为“几何法”,并提示同学们注意它与今后
8、研究问题所用的“坐标法”有何异同。由函数的概念引入解析几何,显得比较自然,学生并不陌生。同时为日后体会“坐标法”解决问题的一般性埋下伏笔。师生互动探究新知约22分钟探究一:直线的方程和方程的直线(约3分钟)第一步:作:请同学们在直角坐
此文档下载收益归作者所有