高中数学《数学归纳法及其应用举例》说课稿2 新人教a版

高中数学《数学归纳法及其应用举例》说课稿2 新人教a版

ID:29371671

大小:153.50 KB

页数:5页

时间:2018-12-19

高中数学《数学归纳法及其应用举例》说课稿2 新人教a版_第1页
高中数学《数学归纳法及其应用举例》说课稿2 新人教a版_第2页
高中数学《数学归纳法及其应用举例》说课稿2 新人教a版_第3页
高中数学《数学归纳法及其应用举例》说课稿2 新人教a版_第4页
高中数学《数学归纳法及其应用举例》说课稿2 新人教a版_第5页
资源描述:

《高中数学《数学归纳法及其应用举例》说课稿2 新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《数学归纳法及应用举例》第一课说课方案一、说教材(一)教材分析本课是数学归纳法的第一节课。前面学生已经通过数列一章内容和其它相关内容的学习,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。不完全归纳法它是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法─数学归纳法。数学归纳法安排在数列之后极限之前,是促进学生从有限思维发展到无限思维的一个重要环节。并且,本节内容是培养学生严密的

2、推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。(二)教学目标学生通过数列等相关知识的学习。已基本掌握了不完全归纳法,已经有一定的观察、归纳、猜想能力。通过近几年教学方法的改革和素质教育的实施,学生已基本习惯于对已给问题的主动探究,但主动提出问题和置疑的习惯还未形成。能主动提出问题和敢于置疑是学生具有独立人格和创新能力的重要标志。如何让学生主动置疑和提出问题?本课也想在这方面作一些尝试。根据教学内容特点和教学大纲、根据学生以上实际、根据学生终身发展需要而制订以下教学目标。1.知识目标(1)了解由有限多个特殊事例得出的一般结论

3、不一定正确。(2)初步理解数学归纳法原理。(3)理解和记住用数学归纳法证明数学命题的两个步骤。(4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。2.能力目标(1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。(2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力。3.情感目标(1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神。(2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学。(3)学

4、生通过置疑与探究,培养学生独立的人格与敢于创新精神。(三)教学重难点根据教学大纲要求、本节课内容特点和学生现有知识水平,确定如下教学重难点:1.重点(1)初步理解数学归纳法的原理。(2)明确用数学归纳法证明命题的两个步骤。(3)初步会用数学归纳法证明简单的与正整数数学恒等式。2.难点(1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性。(2)假设的利用,即如何利用假设证明当n=k+1时结论正确。二、说教法本课采用交往式的教学方法。交往教学法的特点是:在教师的组织启发下,师生之间、学生之间共同探讨,平等交流;既强调独立思考

5、,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动性、平等性、开放性、合作性。这种教学方法的优点是学生心态开放,主体性和主动性凸现,独立的个性得到张扬,因而创造性得到解放。三、说学法本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习。本课学生的学习主要采用下面的模式进行:观察情景提出问题分析问题猜想与置疑(结论或解决问题的途径)论证应用。探究学习法的好处是学生主动参与知识的发生、发展过程。学生在探究问题过程中学习,在探究问题的过程中激发学生的好奇心和创新精神;在探究过程中学习科学研究的方法;在探

6、究过程中形成坚韧不拔的精神。学生掌握了这种学习方法后,对学生终身学习,终身发展都有积极意义,这就是让学生学会学习。四、说教学过程主干层次为:创设情景(提出问题);探索解决问题的方法(建立数学模型);方法尝试(感性认识);理解升华(理性认识);方法应用(解决问题);课堂小结(反馈与提高)。教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。具体过程安排如下:(一)创设问题情景1.情景创设情景一:生活中的实际例子(摸

7、出球的颜色问题)情景二:已知数列的通项公式,学生分别计算、、、的值,猜想的值,计算的值。请学生创设一个由有限多个特殊事例得出一般结论的数学公式。情景三(学生自己创设):学生共同回顾等差数列通项公式推导过程:2.学生观察、分析以上三个情景,提出与分析问题,得出结论。3.结论:这些用有限多个特殊事例得出的结论,有的正确,有的不正确。因此不能作为论证的方法。下面教师用教学语言讲述:等差数列的通项公式也是由有限个特殊事例归纳出来的,也可能不正确,一但错误,我们已建立的数列大厦必将倒塌,必须对其进行抢救性证明,如何证明这类有关正整数的命题呢?(

8、二)探索解决问题的方法1.多媒体演示多米诺骨牌游戏。师生共同探讨多米诺骨牌全部依次倒下的条件:(1)第一块要倒下;(2)当前面一块倒下时,后面一块必须倒下;当满足这两个条件后,多米诺骨牌全部都倒下。2.学生类比多米诺骨牌

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。