欢迎来到天天文库
浏览记录
ID:29371448
大小:141.50 KB
页数:6页
时间:2018-12-19
《高中数学《对数函数-对数与对数运算》说课稿2 新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.1对数与对数运算(2)从容说课本课是在理解对数概念的基础上,联系指数幂的运算性质来学习对数的运算性质.教学重点是探究并证明对数的运算性质.教学难点是在掌握对数运算性质的基础上,能灵活运用运算性质进行化简求值.根据指数式和对数式之间的关系,通过与指数幂的运算性质类比得出对数的运算性质,引导学生自己完成推导过程,以加深对公式的记忆和理解.对公式不仅要掌握其内容,更要注意公式适用条件.(运算性质的探究,层次较高的学生可以采用“概念形成”的学习方式通过对具体例子的提出,由特殊到一般归纳出法则,再利用指数式
2、与对数式的关系完成证明)对数运算性质的综合运用,经常要求逆用运算性质,应掌握变形技巧,各部分变形要化到最简形式,同时注意分子、分母的联系,且要避免错用对数运算性质.运算性质的认识,可以类比指数运算法则来理解记忆,强化法则使用的条件,注意对数式中每一个字母的取值范围.三维目标一、知识与技能掌握对数的运算性质,能较熟练地运用对数的运算性质解决有关对数式的化简、求值问题.二、过程与方法1.通过师生之间、学生与学生之间互相交流,培养学生会与别人共同学习、共同研究探讨的能力.2.利用类比的方法,得出对数的运算性质,
3、让学生体会到数学知识的前后连贯性,加深对公式内容及公式适用条件的记忆.3.通过探究、思考,培养学生理性思维能力、观察能力以及判断能力.三、情感态度与价值观1.在教学过程中,通过学生的相互交流,来加深对对数运算性质的推导过程的理解,增强学生数学交流能力和数学地分析问题的能力.2.通过对数运算性质的学习,使学生明确数学概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,体会知识之间的有机联系,感受数学的整体性.3.通过计算器来探索对数的运算性质,使学生认识到现代信息技术是认识世界的有效手段和工具,激发学
4、生学习数学的热情.教学重点1.掌握对数的运算性质.2.应用对数运算性质求值、化简.教学难点对数运算性质的灵活运用.教具准备多媒体课件、投影仪、打印好的作业.教学过程一、复习回顾,引入新课师:上一节课我们学习了对数的概念、指数式与对数式的互化,我们知道,对数和指数都是一种运算,而且对数运算是指数运算的逆运算,指数有它自己的一套运算性质.从指数与对数的关系以及指数运算性质,能得出相应的对数运算性质吗?这就是本节课所要探究的知识.(引入课题,书写课题——对数的运算性质)二、讲解新课(一)对数的运算性质的探索师:
5、指数幂运算有哪些性质?(生口答,师简单板书)当a、b>0,m、n∈R时,am·an=am+n,am÷an=am-n,(am)n=amn,=a.师:根据对数的定义可得:logaN=bab=N(a>0,a≠1,N>0),那么,对数运算也有相应的运算性质吗?如果有,它们的运算性质会与指数幂的运算性质之间有什么联系呢?(生思考)合作探究:由于am·an=am+n,设M=am,N=an,于是MN=am+n.由对数的定义得到logaM=m,logaN=n,loga(M·N)=m+n.这样,我们就得到对数的一个运算性质
6、:loga(M·N)=logaM+logaN.师:同样地,可以仿照上述过程,由am÷an=am-n和(am)n=amn,得出对数运算的其他性质.(生板演)∵am÷an=am-n,设M=am,N=an,∴=am-n.∴由对数的定义得到logaM=m,logaN=n,loga=m-n.∴loga=logaM-logaN.∵(am)n=amn,设M=am,∴Mn=amn.∴由对数的定义得到logaM=m,logaMn=mn,∴logaMn=nlogaM.(师组织生讨论得出)对数的运算性质:loga(MN)=lo
7、gaM+logaN,loga=logaM-logaN,logaMn=nlogaM(n∈R),其中,a>0,a≠1,M>0,N>0.师:以上三个性质可归纳为:(1)积的对数等于各因式对数的和;(2)商的对数等于被除数的对数减除数的对数;(3)幂的对数等于指数乘以底数的对数.师:这几条运算性质会对我们进行对数运算带来哪些方便呢?(生交流探讨,得出如下结论)结论:利用以上性质,可以使两正数的积、商的对数运算问题转化为两正数各自的对数的和、差运算,大大的方便了对数式的化简、求值.(二)概念理解合作探究:利用对数运
8、算性质时,各字母的取值范围有什么限制条件?(师组织,生交流探讨得出如下结论)底数a>0,且a≠1,真数M>0,N>0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.师:性质能否进行推广?(生交流讨论)性质(1)可以推广到n个正数的情形,即loga(M1M2M3…Mn)=logaM1+logaM2+logaM3+…+logaMn(其中a>0,且a≠1,M1、M2、M3…Mn>0).知识拓展:当a>0,a≠1,M>0
此文档下载收益归作者所有