欢迎来到天天文库
浏览记录
ID:29370974
大小:352.00 KB
页数:3页
时间:2018-12-19
《高中数学《1.3.2“杨辉三角”与二项式系数的性质》教案2 新人教a版选修2-3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3.2“杨辉三角”与二项式系数的性质第一课时一、复习引入:1.二项式定理及其特例:(1),(2).2.二项展开式的通项公式:3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性二、讲解新课:1二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和2.二项式系数的性质:展开式的二项式系数是,,,…,.可以看成以为自变量的函数定义域是,例当时,其图象是个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵).直线是图象的对称轴.(2)增减性与最
2、大值.∵,∴相对于的增减情况由决定,,当时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值.(3)各二项式系数和:∵,令,则三、讲解范例:例1.在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和证明:在展开式中,令,则,即,∴,即在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.说明:由性质(3)及例1知.例2.已知,求:(1);(2);(3).解:(1)当时,,展开式右边为∴,当时,,∴,(2)令,①令,②①②得:,∴.(3)由展开式知:均为负,均为正,∴由(2)中①
3、+②得:,∴,∴例3.求(1+x)+(1+x)2+…+(1+x)10展开式中x3的系数解:=,∴原式中实为这分子中的,则所求系数为
此文档下载收益归作者所有