欢迎来到天天文库
浏览记录
ID:29370051
大小:49.50 KB
页数:7页
时间:2018-12-19
《高中数学 第九章第20课时两个平面平行的判定和性质(二)教师专用教案 新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、两个平面平行的判定和性质(二) 一、素质教育目标(一)知识教学点1.两个平面平行的性质.2.两个平行平面的公垂线、公垂线段、距离的定义.(二)能力训练点1.利用转化的思维方法掌握和应用两个平面平行的性质.2.应用类比的方法理解并掌握两个平行平面的公垂线、公垂线段、距离的定义.二、教学重点、难点、疑点及解决方法1.教学重点:掌握两个平面平行的性质及其应用;掌握两平行平面间的距离的概念,会求两个平行平面间的距离.2.教学难点:掌握两个平行平面的性质及其应用.3.教学疑点:正确掌握如何将两个平面平行的性质的研究转化为线线平行、线面平行、线面
2、垂直的研究.三、课时安排1.12两个平面的位置关系及1.13两个平面平行的判定和性质这两个课题调整安排为2课时.本节课为第二课时,主要讲解两个平面平行的性质.四、教与学过程设计(一)复习两个平面的位置关系及两个平面平行的判定(一)复习两个平面的位置关系及两个平面平行的判定师:两个平面的位置关系有哪几种?生:平行或相交.师:两个平面平行的判定方法有哪几种?生:第一种可根据定义(一般用反证法).b=0,a∥β,b∥β,则α∥β.第三种可根据例1的结论,即:如图1-110,若α⊥AA',β⊥AA',则α∥β.(二)两个平面平行的性质师:今天
3、我们研究两个平面平行的性质.根据两个平面平行直线和平面平行的定义可知:两个平面平行,其中一个平面内的直线必平行于另一个平面.因此,在解决实际问题时,常常把面面平行转化为线面平行或线线平行.这个结论可作为两个平面平行的性质1:若α∥1.两个平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.已知:α∥β,γ∩α=a,γ∩β=b.求证:a∥b.师:要证明这个定理,有两种证法:直接证法和间接证法(即反证法).下面请同学们书写直接证法,口述反证法.生:(直接证法.)∵α∥β,∴α与β没有公共点.∴a∥b.(反证法.)假
4、设直线a不平行于直线b,因为直线a、b在同一个平面γ内,公共点P,即α,β相交,这与“α∥β”矛盾,所以假设不成立,即a∥b.师:这个结论可作为性质2:若α∥β,α∩γ=a,β∩γ=b,则a∥b.下面我们再看一个例题.2.例题例2 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.已知:α∥β,l⊥α,l∩α=A.求证:l⊥β.师提问:证明直线与平面垂直的方法有几种?师与生共同回忆:方法一,证明直线与平面内的任何一条直线都垂直;方法二,证明直线与平面内两条相交的直线垂直;方法三,证明直线的一条平行线与平面垂直.比较几种方法
5、,我们可以试着用第一种方法来证明.证明:在平面β内任取一条直线b,平面γ是经过点A与直线b的平面,设γ∩α=a.因为直线b是平面β内的任意一条直线,所以l⊥β.师:这个例题的结论可与定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线.”联系起来记忆,它也可作为性质3:若α∥β,l⊥α,则l⊥β.3.两个平行平面的公垂线、公垂线段和距离师:象性质3这样的,和两个平行平面α,β同时垂直的直线l,叫做这两个平行平面α,β的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段.如图1—113,α∥β.如果AA'、B
6、B'都是它们的公垂线段,那么AA'∥BB',根据两个平面平行的性质定理有A'B'∥AB,所以四边形ABB'A'是平行四边形,AA'=BB'.由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性.与两平行线间的距离定义相类似,我们把公垂线段的长度叫做两个平行平面的距离.两个平行平面间距离实质上也是点到面或两点间的距离,求值最后也是通过解三角形求得4.练习(幻灯显示)(1)如图1—114,平面α∥β,△ABC在β内,P是α、β间的一点,线段PA、PB、PC分别交α于A'、B'、C',若BC=12cm,AC=50cm,AB
7、=13cm,且PA'∶PA=2∶3,则△师提示:△ABC∽△A'B'C',且相似比为3∶2.BB'⊥β于B',若AC⊥AB,AC与β成60°角,AC=8cm,B'师提示:可求A'C=4cm,又可证AB⊥平面AA'C,且四边形AA'B'B为矩形,∴AB=A'B',AB∥A'B'.∴A'B'⊥平面AA'C,从而A'B'⊥A'C.在Rt△A'B'C中,(3)(P.38中练习3)夹在两个平行平面间的平行线段相等.已知:如图1—116,α∥β,AB∥CD,A∈α,C∈α,B∈β,D∈β.求证:AB=CD.证明:∵AB∥CD,∴过AB、CD的平面
8、γ与平面α和β分别交于AC'和BD.∵α∥β,∴BD∥AC.∴四边形ABCD是平行四边形,∴AB=CD.师:这个练习的结论可作为性质4:夹在两个平行平面间的平行线段相等.(三)总结这节课,我们不仅学习了两个平行平面的公垂
此文档下载收益归作者所有