欢迎来到天天文库
浏览记录
ID:29367207
大小:153.00 KB
页数:3页
时间:2018-12-19
《高中数学 2.1《等差数列1》教案(北师大版必修5)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、等差数列教学目标1.明确等差数列的定义.2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3.培养学生观察、归纳能力.教学重点1.等差数列的概念;2.等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教学方法启发式数学教具准备投影片1张(内容见下面)教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;
2、②③生:积极思考,找上述数列共同特点。对于数列①(1≤n≤6);(2≤n≤6)对于数列②-2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。如:上述3个数列都是等差数列,它们的公差依次是1,-2,。一、等差数列的通项公
3、式师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:若将这n-1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:二、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得
4、-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。(Ⅲ)课堂练习生:(口答)(书面练习)师:组织学生自评练习(同桌讨论)(Ⅳ)课时小结师:本节主要内容为:①等差数列定义。即(n≥2)②等差数列通项公式(n≥1)推导出公式:(V)课后作业一、课本二、1.预习内容:2.预习提纲:①如何应用等差数列的定义及通项公式解决一些相关问题?②等差数列有哪些性质?板书设计课题一、定义1.(n≥2)一、通项公式2.公式推导过程例题教学后记w.w.w.k.s.5.u.c.o.mwww.ks5u.com
此文档下载收益归作者所有