高中数学 2.1《函数的概念和图象》教案七 苏教版必修1

高中数学 2.1《函数的概念和图象》教案七 苏教版必修1

ID:29367179

大小:150.50 KB

页数:3页

时间:2018-12-19

高中数学 2.1《函数的概念和图象》教案七 苏教版必修1 _第1页
高中数学 2.1《函数的概念和图象》教案七 苏教版必修1 _第2页
高中数学 2.1《函数的概念和图象》教案七 苏教版必修1 _第3页
资源描述:

《高中数学 2.1《函数的概念和图象》教案七 苏教版必修1 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.3 函数的简单性质(2)教学目标:1.进一步理解函数的单调性,能利用函数的单调性结合函数的图象,求出有关函数的最小值与最大值,并能准确地表示有关函数的值域;2.通过函数的单调性的教学,让学生在感性认知的基础上学会理性地认识与描述生活中的增长、递减等现象.教学重点:利用函数的单调性求函数的值域.教学过程:一、问题情境1.情境.(1)复述函数的单调性定义;(2)表述常见函数的单调性.2.问题.t/hθ/℃108642-2242414结合函数的图象说出该天的气温变化范围.二、学生活动1.研究函数的最值;2.利用函数的单调性的改变,找出函数取最值的情况;三

2、、数学建构1.函数的值域与函数的最大值、最小值:一般地,设y=f(x)的定义域为A.若存在x0ÎA,使得对任意xÎA,f(x)≤f(x0)恒成立,则称f(x0)为y=f(x)的最大值,记为ymax=f(x0).若存在定值x0ÎA,使得对任意xÎA,f(x)≥f(x0)恒成立,则称f(x0)为y=f(x)的最小值,记为ymin=f(x0).注:(1)函数的最大值、最小值分别对应函数图象上的最高点和最低点,典型的例子就是二次函数y=ax2+bx-c(a≠0),当a>0时,函数有最小值;当a<0时,函数有最大值.(2)利用函数的单调性,并结合函数的图象求函数的值

3、域或函数的最值是求函数的值域或函数的最值的常用方法.2.函数的最值与单调性之间的关系:已知函数y=f(x)的定义域是[a,b],a<c<b.当xÎ[a,c]时,f(x)是单调增函数;当xÎ[c,b]时,f(x)是单调减函数.则f(x)在x=c时取得最大值.反之,当xÎ[a,c]时,f(x)是单调减函数;当xÎ[c,b]时,f(x)是单调增函数.则f(x)在x=c时取得最小值.四、数学运用例1 求出下列函数的最小值:(1)y=x2-2x;(2)y=,x∈[1,3].变式:(1)将y=x2-2x的定义域变为(0,3]或[1,3]或[-2,3],再求最值.(2)

4、将y=的定义域变为(-2,-1],(0,3]结果如何?跟踪练习:求f(x)=-x2+2x在[0,10]上的最大值和最小值.例2 已知函数y=f(x)的定义域为[a,b],a<c<b.当x∈[a,c]时,f(x)是单调增函数;当x∈[c,b]时,f(x)是单调减函数.试证明f(x)在x=c时取得最大值.变式:已知函数y=f(x)的定义域为[a,b],a<c<b.当x∈[a,c]时,f(x)是单调减函数;当x∈[c,b]时,f(x)是单调增函数.试证明f(x)在x=c时取得最小值.例3 求函数f(x)=x2-2ax在[0,4]上的最小值.3-1-4x43557

5、-1-2yO练习:如图,已知函数y=f(x)的定义域为[-4,7],根据图象,说出它的最大值与最小值.求下列函数的值域:(1)y=,xÎ[0,3];(2)y=,xÎ[2,6];(3)y=;(4)y=.五、回顾小结利用图形,感知函数的单调性→证明一个函数的单调性→确定一个函数的最值→确定一个函数的值域.六、作业课堂作业:课本37页第3题,43页第3题.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。