转神经网络与高级思维(1)

转神经网络与高级思维(1)

ID:29356206

大小:51.82 KB

页数:13页

时间:2018-12-18

转神经网络与高级思维(1)_第1页
转神经网络与高级思维(1)_第2页
转神经网络与高级思维(1)_第3页
转神经网络与高级思维(1)_第4页
转神经网络与高级思维(1)_第5页
资源描述:

《转神经网络与高级思维(1)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、转神经网络与高级思维20071[摘要]本文从生物神经元的角度简单阐述了人脑高级思维的形成机制。通过对反射、认知、创造等概念的重新定义,全面的解析人脑的工作原理,以及在这一运行机制下对于外界所反应出来的相关现象。[关键词]反射认知创造神经网络人工智能一、生物神经网络系统生物神经系统是以神经元为基本单位,神经元的外部形态各异,但基本功能相同,在处于静息状态时(无刺激传导),神经细胞膜处于极化状态,膜内的电压低于膜外电压,当膜的某处受到的刺激足够强时,刺激处会在极短的时间内出现去极化、反极化(膜内的电压高于膜外电压)、复极化的过程,当刺激部位处于反极化状态时,邻近未受刺激的部位仍处

2、于极化状态,两着之间就会形成局部电流,这个局部电流又会刺激没有去极化的细胞膜使之去极化等等,这样不断的重复这一过程,将动作电位传播开去,一直到神经末梢。神经元与神经元之间的信息传递是通过突触相联系的,前一个神经元的轴突末梢作用于下一个神经元的胞体、树突或轴突等处组成突触。不同神经元的轴突末梢可以释放不同的化学递质,这些递质在与后膜受体结合时,有的能引起后膜去极化,当去极化足够大时就形成了动作电位;也有的能引起后膜极化增强,即超极化,阻碍动作电位的形成,能释放这种递质的神经元被称为抑制神经元。此外,有的神经元之间可以直接通过突触间隙直接进行电位传递,称为电突触。还有的因树突膜上

3、电压门控式钠通道很少,树突上的兴奋或抑制活动是以电紧张性形式扩布的,这种扩布是具有衰减性的。图1一个神经元可以通过轴突作用于成千上万的神经元,也可以通过树突从成千上万的神经元接受信息,当多个突触作用在神经元上面时,有的能引起去极化,有的能引起超极化,神经元的冲动,即能否产生动作电位,取决于全部突触的去极化与超级化作用之后,膜的电位的总和以及自身的阈值。神经纤维的电传导速度因神经元的种类、形态、髓鞘有无等因素的不同而存在很大差异,大致从0.3m/s到100m/s不等。在神经元与神经元之间的信息交换速度也因突触种类或神经递质的不同而存在着不同的突触延搁,突触传递信息的功能有快有慢

4、,快突触传递以毫秒为单位计算,主要控制一些即时的反应;慢突触传递可长达以秒为单位来进行,甚至以小时,日为单位计算,它主要和人的学习,记忆以及精神病的产生有关系。2000年诺贝尔生理学或医学奖授予了瑞典哥德堡大学77岁的阿维·卡尔松、美国洛克菲勒大学74岁的保罗·格林加德以及出生于奥地利的美国哥伦比亚大学70岁的埃里克·坎德尔,以表彰他们发现了慢突触传递这样一种"神经细胞间的信号转导形式"。本次获奖者的主要贡献在于揭示"慢突触传递",在此之前,"快突触传递"已经得过诺贝尔奖。此外,使用频繁的突触联系会变得更紧密,即突触的特点之一是用进废退,高频刺激突触前神经元后,在突触后神经元

5、上纪录到的电位会增大,而且会维持相当长的时间。所以可以得出一条由若干不定种类的神经元排列构成的信息传导链对信息的传导速度会存在很大的弹性空间,这一点对神经系统认知事件有着非常重要的意义。神经系统按功能可大致分为传入神经(感觉神经)、中间神经(脑:延脑、脑桥、小脑、中脑、间脑、大脑脊髓)与传出神经(运动神经)三类。生物要适应外界环境的变化,就必须能够感受到这种变化,才能做出反应。生物的感受器多种多样,有的是单单感觉神经元的神经末梢;有的是感受器细胞;还有的感受器除了感受细胞外还增加了附属装置,且附属装置还很复杂,形成特殊的感觉器官。无论感受器的复杂程度如何,它在整个神经系统中都

6、起着信息采集的作用,它将外界物理的或化学的动态信号反应在感觉神经细胞膜的电位变化上,膜上的电位变化可形成动作电位向远端传导。中间神经在系统中起着计算及信息传导的作用,通常感觉神经传来的动作电位经过若干个中间神经元的计算响应后在传递到传出神经形成反射弧,但也有的反射弧仅由传入神经元与传出神经元直接组成,如敲击股四头肌引起的膝反射。传出神经可分为躯体神经与内脏神经两类,它们都最终连接着效应器,只是内脏神经需要通过一个神经节来连接效应器,最后由效应器调空肌体器官做出相应的反应。二、生物神经网络的建立1994年,一种被称为Netrin-1、将轴突吸引到分泌它的神经细胞的可扩散蛋白被发

7、现,此后人们发现,同一轴突引导分子既可吸引、也可排斥前来的轴突。其中,环状AMP(也称cAMP)、环状GMP(也称cGMP)和钙离子,都可能是从参与将发育中的神经元引导到其目标上的受体中转导信号的第二种信使。新的实验表明,正是cAMP/cGMP的比例决定着Netrin-1是起一种吸引信号的作用还是起一种排斥信号的作用,这些环状核苷通过控制轴突生长锥中的L-型钙通道来起作用。目前已经发现大量对神经轴突生长具有导向作用的分子,这些分子可以分为两大类:一类分子固着在细胞膜表面或细胞外基质中,影响局部的神经纤维

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。