欢迎来到天天文库
浏览记录
ID:29290752
大小:63.00 KB
页数:6页
时间:2018-12-18
《秋八年级数学上册 2.6 实数教学设计 (新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章实数6.实数一、学生起点分析实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节。这节内容教材安排了3个课时,本节课为第一课时。主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一
2、一对应的。在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。本节课的教学目标是:1.了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结
3、合的思想。4.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。5.了解数系扩展对人类认识发展的必要性;教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。教学难点利用数轴上的点表示无理数三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的
4、运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。第二环节:实数概念和分类内容1:把
5、下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)…有理数集合…无理数集合知识整理:有理数和无理数统称为实数。意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念。效果:学生动手填写,并进行小组交流讨论,对带根号的数是否是无理数有了进一步认识。内容2:1.你能把上面各数分别填入下面相应的集合内吗?…正数集合…负数集合2.0属于正数吗?0属于负数吗?知识整理:无理数和有理数一样,也有正负之分。1.从符号考虑,实数可以分为正实数、0、负实数,即:2.另
6、外从实数的概念也可以进行如下分类:意图:在实数概念形成的基础上对实数进行不同的分类。上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类。提醒学生分类可以有不同的方法,但要按同一标准不重不漏。效果:让学生讨论回答,形成共识:实数也可以分为正实数、0、负实数,并体会到了分类中不能出现遗漏和重复的要求。第三环节:实数的相关概念内容1:1.在有理数中,数a的相反数是什么?绝对值是什么?当a不为0时,它的倒数是什么?2.的相反数是什么?的倒数是什么?,0,—π的绝对值
7、分别是什么?意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的。效果:学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义。内容2:想一想:1.3—π的绝对值是。2.想一想:a是一个实数,它的相反数是,它的绝对值是,当a≠0时,它的倒数是。知识整理(1)相反数:a与—a互为相反数;0的相反数仍是0;(2)倒数:当a≠0时,a与互为倒数(0没有倒数);(3)绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;即:意图:
8、加深学生对相关概念的理解。效果:学生在讨论交流中进一步掌握了实数的相反数、倒数、绝对值等知识。第四环节:实数运算内容:1.在有理数范围内,能进行哪些运算?(加、减、乘、除、乘方),用哪些运算律?2.判断下列各式成立吗?意图:从复习入手,类比有理数中的相关运算及运算律,得到有理数的运算及运算律对实数仍然适
此文档下载收益归作者所有