八年级数学下册 第十八章勾股定理全章教案 人教新课标版

八年级数学下册 第十八章勾股定理全章教案 人教新课标版

ID:29271007

大小:942.00 KB

页数:14页

时间:2018-12-18

八年级数学下册 第十八章勾股定理全章教案 人教新课标版_第1页
八年级数学下册 第十八章勾股定理全章教案 人教新课标版_第2页
八年级数学下册 第十八章勾股定理全章教案 人教新课标版_第3页
八年级数学下册 第十八章勾股定理全章教案 人教新课标版_第4页
八年级数学下册 第十八章勾股定理全章教案 人教新课标版_第5页
资源描述:

《八年级数学下册 第十八章勾股定理全章教案 人教新课标版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、18.1勾股定理(1)年级:八年级科目:数学课型:新授执笔:姜艳审核:徐中国,薛柏双备课时间:2010.3.28上课时间:2010.3.31教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2.培养在实际生活中发现问题总结规律的意识和能力。3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。重点:勾股定理的内容及证明。难点:勾股定理的证明。课前预习导学过程阅读教材第64页至第67页的部分,完成以下问题在Rt△ABC,∠C=90°⑴已知a=b=5,求c。⑵已知a=1,c=2,求b。⑶已知c=17

2、,b=8,求a。⑷已知a:b=1:2,c=5,求a。⑸已知b=15,∠A=30°,求a,c课堂活动:活动1、预习反馈多种方法证明勾股定理活动2、例习题分析DABC例1:一个门框的尺寸如图,一块3m,宽2.2m的薄木板能否从门框内通过?为什么?例2:如图,一个3m长的梯子AB,斜靠在一竖直的墙AO,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?课堂练习:1.勾股定理的具体内容是:2.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;⑵若D为斜边中点,则斜边中线;⑶若∠B=3

3、0°,则∠B的对边和斜边:;⑷三边之间的关系:。3.⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=。⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=。⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a=,b=。⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为。⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。⑹已知等边三角形的边长为2cm,则它的高为,面积为。4.△ABC的三边a、b、c,若满足b2=a2+c2,则=90°;若满足b2>c2+a2,则∠B是角;若满足b2<c2+a2,则∠B是角。5.根据如

4、图所示,利用面积法证明勾股定理。课后巩固:1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则⑴c=。(已知a、b,求c)⑵a=。(已知b、c,求a)⑶b=。(已知a、c,求b)2.在Rt△ABC,∠C=90°,⑴如果a=7,c=25,则b=。⑵如果∠A=30°,a=4,则b=。⑶如果∠A=45°,a=3,则c=。⑷如果c=10,a-b=2,则b=。⑸如果a、b、c是连续整数,则a+b+c=。⑹如果b=8,a:c=3:5,则c=。3.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B

5、=60°,则江面的宽度为。3题图5题图4.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米。5.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ=厘米。6.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长。7.已知:如图,在△ABC中,AB=AC,D在CB的延长线上。求证:⑴AD2-AB2=BD·CD⑵若D在CB上,结论如何,试证明你的结论。18.1.2勾股定理(2)年级:初二学科:数学课型:新授备课时间:2010-3-29

6、执笔:薛柏双审核:姜艳徐中国上课时间:2010-4-1教学目标:1、能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。2、体会数与形的密切联系,增强应用意识,提高运用勾股定理解决问题的能力。3、培养学生数形结合的数学思想,并积极参与交流,并积极发表意见。重点:利用勾股定理在数轴上表示无理数。难点:确定以无理数为斜边的直角三角形的两条直角边长。【预习内容】(阅读教材第67至68页,并完成预习内容。)探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?1、分析:如果能画出长为_______的线段,

7、就能在数轴上画出表示的点。容易知道,长为的线段是两条直角边都为______的直角边的斜边。长为的线段能是直角边为正整数的直角三角形的斜边吗?利用勾股定理,可以发现,长为的线段是直角边为正整数_____,_____的直角三角形的斜边。2、作法:在数轴上找到点A,使OA=_____,作直线l垂直于OA,在l上取点B,使AB=_____,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示的点。3、利用勾股定理,可以作出长为,,,…的线段。按照同样的方法,可以在数轴上画出表示,,,,…的点。4.在数轴上画出表示的点?(尺规作图)【课堂活动】活动1预习反

8、馈、概念明确活动2典型例题课堂训练例1已知直角三角形的两边长分别为5和12,求第三边。例2已知

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。