高等数学常用极限求法[1]

高等数学常用极限求法[1]

ID:29205921

大小:470.00 KB

页数:15页

时间:2018-12-17

高等数学常用极限求法[1]_第1页
高等数学常用极限求法[1]_第2页
高等数学常用极限求法[1]_第3页
高等数学常用极限求法[1]_第4页
高等数学常用极限求法[1]_第5页
资源描述:

《高等数学常用极限求法[1]》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、范文范例参考求函数极限的方法和技巧摘要:本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。关键词:函数极限引言在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。主要内容一、求函数极限的方法1、运用极限的定义例:用极限定义证明:证:由取则当时,就有由函数极限定义有:word版整理范文范例参考2、利用极限的四则运算性质若(I)(II)(III)若B≠0则:(IV

2、)(c为常数)上述性质对于例:求解:=3、约去零因式(此法适用于)例:求解:原式==word版整理范文范例参考===4、通分法(适用于型)例:求解:原式===5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)设函数f(x)、g(x)满足:(I)(II)(M为正整数)则:例:求解:由而故原式=6、利用无穷小量与无穷大量的关系。word版整理范文范例参考(I)若:则(II)若:且f(x)≠0则例:求下列极限①②解:由故由故=7、等价无穷小代换法设都是同一极限过程中的无穷小量,且有:,存在,则也存在,且有=例:求极限解:=注:在利用等价无穷

3、小做代换时,一般只在以乘积形式出现时可以互换,若以和、差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数”8、利用两个重要的极限。word版整理范文范例参考但我们经常使用的是它们的变形:例:求下列函数极限9、利用函数的连续性(适用于求函数在连续点处的极限)。word版整理范文范例参考例:求下列函数的极限(2)10、变量替换法(适用于分子、分母的根指数不相同的极限类型)特别地有:m、n、k、l为正整数。例:求下列函数极限①、n②解:①令t=则当时,于是原式=②由于=word版整理范文范例参考令:则===11、利用函数极限的存在性定理定

4、理:设在的某空心邻域内恒有g(x)≤f(x)≤h(x)且有:则极限存在,且有例:求(a>1,n>0)解:当x≥1时,存在唯一的正整数k,使k≤x≤k+1于是当n>0时有:及又当x时,k有及word版整理范文范例参考=012、用左右极限与极限关系(适用于分段函数求分段点处的极限,以及用定义求极限等情形)。定理:函数极限存在且等于A的充分必要条件是左极限及右极限都存在且都等于A。即有:==A例:设=求及由13、罗比塔法则(适用于未定式极限)定理:若word版整理范文范例参考此定理是对型而言,对于函数极限的其它类型,均有类似的法则。注:运用罗比塔法则求极限应注意以下

5、几点:1、要注意条件,也就是说,在没有化为时不可求导。2、应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数。3、要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误。4、当不存在时,本法则失效,但并不是说极限不存在,此时求极限须用另外方法。例:求下列函数的极限①②解:①令f(x)=,g(x)=l,由于但从而运用罗比塔法则两次后得到word版整理范文范例参考②由故此例属于型,由罗比塔法则有:14、利用泰勒公式对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为

6、常用的展开式:1、2、3、4、5、6、上述展开式中的符号都有:例:求解:利用泰勒公式,当有word版整理范文范例参考于是===15、利用拉格朗日中值定理定理:若函数f满足如下条件:(I)f在闭区间上连续(II)f在(a,b)内可导则在(a,b)内至少存在一点,使得此式变形可为:例:求解:令对它应用中值定理得即:word版整理范文范例参考连续从而有:16、求代数函数的极限方法(1)有理式的情况,即若:(I)当时,有(II)当时有:①若则②若而则③若,,则分别考虑若为的s重根,即:也为的r重根,即:可得结论如下:例:求下列函数的极限word版整理范文范例参考①②解

7、:①分子,分母的最高次方相同,故=②必含有(x-1)之因子,即有1的重根故有:(2)无理式的情况。虽然无理式情况不同于有理式,但求极限方法完全类同,这里就不再一一详述.在这里我主要举例说明有理化的方法求极限。例:求解:二、多种方法的综合运用上述介绍了求解极限的基本方法,然而,每一道题目并非只有一种方法。因此我们在解题中要注意各种方法的综合运用的技巧,使得计算大为简化。word版整理范文范例参考例:求[解法一]:=注:此法采用罗比塔法则配合使用两个重要极限法。[解法二]:=注:此解法利用“三角和差化积法”配合使用两个重要极限法。[解法三]:注:此解法利用了两个重

8、要极限法配合使用无穷小代换法以及罗比塔

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。